Do you want to publish a course? Click here

Effective microscopic models for sympathetic cooling of atomic gases

84   0   0.0 ( 0 )
 Added by Roberto Onofrio
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thermalization of a system in the presence of a heat bath has been the subject of many theoretical investigations especially in the framework of solid-state physics. In this setting, the presence of a large bandwidth for the frequency distribution of the harmonic oscillators schematizing the heat bath is crucial, as emphasized in the Caldeira-Leggett model. By contrast, ultracold gases in atomic traps oscillate at well-defined frequencies and therefore seem to lie outside the Caldeira-Leggett paradigm. We introduce interaction Hamiltonians which allow us to adapt the model to an atomic physics framework. The intrinsic nonlinearity of these models differentiates them from the original Caldeira-Leggett model and calls for a nontrivial stability analysis to determine effective ranges for the model parameters. These models allow for molecular dynamics simulations of mixtures of ultracold gases, which is of current relevance for optimizing sympathetic cooling in degenerate Bose-Fermi mixtures.



rate research

Read More

We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We find that bosonic atoms offer more flexibility for tuning independently the parameters of the spin Hamiltonian through interatomic (intra-species) interaction which is absent for fermions due to the Pauli exclusion principle. Our formalism can have important implications for control and manipulation of the dynamics of few- and many-body quantum systems; as an illustrative example relevant to quantum computation and communication, we consider state transfer in the simplest non-trivial system of four particles representing exchange-coupled qubits.
126 - N. R. Cooper 2009
This article reviews developments in the theory of rapidly rotating degenerate atomic gases. The main focus is on the equilibrium properties of a single component atomic Bose gas, which (at least at rest) forms a Bose-Einstein condensate. Rotation leads to the formation of quantized vortices which order into a vortex array, in close analogy with the behaviour of superfluid helium. Under conditions of rapid rotation, when the vortex density becomes large, atomic Bose gases offer the possibility to explore the physics of quantized vortices in novel parameter regimes. First, there is an interesting regime in which the vortices become sufficiently dense that their cores -- as set by the healing length -- start to overlap. In this regime, the theoretical description simplifies, allowing a reduction to single particle states in the lowest Landau level. Second, one can envisage entering a regime of very high vortex density, when the number of vortices becomes comparable to the number of particles in the gas. In this regime, theory predicts the appearance of a series of strongly correlated phases, which can be viewed as {it bosoni
Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a non-disordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Neel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust.
We discuss the dynamics of sympathetic cooling of atomic mixtures in realistic, nonlinear trapping potentials using a microscopic effective model developed earlier for harmonic traps. We contrast the effectiveness of different atomic traps, such as Ioffe-Pritchard magnetic traps and optical dipole traps, and the role their intrinsic nonlinearity plays in speeding up or slowing down thermalization between the two atomic species. This discussion includes cases of configurations with lower effective dimensionality. From a more theoretical standpoint, our results provide the first exploration of a generalized Caldeira-Leggett model with nonlinearities both in the trapping potential as well as in the interspecies interactions, and no limitations on their coupling strength.
The physics of highly excited Rydberg atoms is governed by blockade or exclusion interactions that hinder the excitation of atoms in the proximity of a previously excited one. This leads to cooperative effects and a relaxation dynamics displaying space-time heterogeneity similar to what is observed in the relaxation of glass-forming systems. Here we establish theoretically the existence of a glassy dynamical regime in an open Rydberg gas, associated with phase coexistence at a first-order transition in dynamical large deviation functions. This transition occurs between an active phase of low density in which dynamical processes take place on short timescales, and an inactive phase in which excited atoms are dense and the dynamics is highly arrested. We perform a numerically exact study and develop a mean-field approach that allows to understand the mechanics of this phase transition. We show that radiative decay --- which becomes experimentally relevant for long times --- moves the system away from dynamical phase coexistence. Nevertheless, the dynamical phase transition persists and causes strong fluctuations in the observed dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا