Geodesics and the competition interface for the corner growth model


Abstract in English

We study the directed last-passage percolation model on the planar integer lattice with nearest-neighbor steps and general i.i.d. weights on the vertices, outside the class of exactly solvable models. In a previous paper we constructed stationary cocycles and Busemann functions for this model. Using these objects, we prove new results on the competition interface, on existence, uniqueness, and coalescence of directional semi-infinite geodesics, and on nonexistence of doubly infinite geodesics.

Download