Do you want to publish a course? Click here

Microstate solutions from black hole deconstruction

85   0   0.0 ( 0 )
 Added by Joris Raeymaekers
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We present a new family of asymptotic AdS_3 x S^2 solutions to eleven dimensional supergravity compactified on a Calabi-Yau threefold. They originate from the backreaction of S^2-wrapped M2-branes, which play a central role in the deconstruction proposal for the microscopic interpretation of the D4-D0 black hole entropy. We show that they are free of possible pathologies such as closed timelike curves and discuss their holographic interpretation.



rate research

Read More

We present a sample microstate for a black ring in four and five dimensional language. The microstate consists of a black string microstate with an additional D6-brane. We show that with an appropriate choice of parameters the piece involving the black string microstate falls down a long AdS throat, whose M-theory lift is AdS_3 X S^2. We wrap a spinning dipole M2-brane on the S^2 in the probe approximation. In IIA, this corresponds to a dielectric D2-brane carrying only D0-charge. We conjecture this is the first approximation to a cloud of D0-branes blowing up due to their non-abelian degrees of freedom and the Myers effect.
We model black hole microstates and quantum tunneling transitions between them with networks and simulate their time evolution using well-established tools in network theory. In particular, we consider two models based on Bena-Warner three-charge multi-centered microstates and one model based on the D1-D5 system; we use network theory methods to determine how many centers (or D1-D5 string strands) we expect to see in a typical late-time state. We find three distinct possible phases in parameter space for the late-time behaviour of these networks, which we call ergodic, trapped, and amplified, depending on the relative importance and connectedness of microstates. We analyze in detail how these different phases of late-time behavior are related to the underlying physics of the black hole microstates. Our results indicate that the expected properties of microstates at late times cannot always be determined simply by entropic arguments; typicality is instead a highly non-trivial, emergent property of the full Hilbert space of microstates.
We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein-Hawking entropies for Schwarzschild black holes and Reissner-Nordstrom black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner-Nordstrom black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein-Hawking entropy of extremal black holes in the semiclassical limit.
An exact spherically symmetric black hole solution of a recently proposed noncommutative gravity theory based on star products and twists is constructed. This is the first nontrivial exact solution of that theory. The resulting noncommutative black hole quite naturally exhibits holographic behavior; outside the horizon it has a fuzzy shell-like structure, inside the horizon it has a noncommutative de Sitter geometry. The star product and twist contain Killing vectors and act non-trivially on tensors except the metric, which is central in the algebra. The method used can be applied whenever there are enough spacetime symmetries. This includes noncommutati
We reproduce the asymptotic expansion of the D1D5 microstate geometries by computing the emission amplitudes of closed string states from disks with mixed D1D5 boundary conditions. Thus we provide a direct link between the supergravity and D-brane descriptions of the D1D5 microstates at non-zero string coupling. Microscopically, the profile functions characterizing the microstate solutions are encoded in the choice of a condensate for the twisted open string states connecting D1 and D5 branes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا