No Arabic abstract
Insulating FeGa$_3$ poses peculiar puzzles beyond the occurrence of an electronic gap in an intermetallic compound. This Fe-based material has a very distinctive structural characteristic with the Fe atoms occurring in dimers. The insulating gap can be described comparably well in either the weakly correlated limit or the strongly correlated limit within density functional theory viewpoints, where the latter corresponds to singlet formation on the Fe$_2$ dimers. Though most of the calculated occupied Wannier functions are an admixture of Fe $3d$ and Ga $4s$ or $4p$ states, there is a single bonding-type Wannier function per spin centered on each Fe$_2$ dimer. Density functional theory methods have been applied to follow the evolution of the magnetic properties and electronic spectrum with doping, where unusual behavior is observed experimentally. Both electron and hole doping are considered, by Ge and Zn on the Ga site, and by Co and Mn on the Fe site, the latter introducing direct disturbance of the Fe$_2$ dimer. Results from weakly and strongly correlated pictures are compared. Regardless of the method, magnetism including itinerant phases appears readily with doping. The correlated picture suggests that in the low doping limit Mn (for Fe) produces an in-gap hole state, while Co (for Fe) introduces a localized electronic gap state.
We investigate signatures of electronic correlations in the narrow-gap semiconductor FeGa$_3$ by means of electrical resistivity and thermodynamic measurements performed on single crystals of FeGa$_3$, Fe$_{1-x}$Mn$_x$Ga$_3$ and FeGa$_{3-y}$Zn$_y$, complemented by a study of the 4$d$ analog material RuGa$_3$. We find that the inclusion of sizable amounts of Mn and Zn dopants into FeGa$_3$ does not induce an insulator-to-metal transition. Our study indicates that both substitution of Zn onto the Ga site and replacement of Fe by Mn introduces states into the semiconducting gap that remain localized even at highest doping levels. Most importantly, using neutron powder diffraction measurements, we establish that FeGa$_3$ orders magnetically above room temperature in a complex structure, which is almost unaffected by the doping with Mn and Zn. Using realistic many-body calculations within the framework of dynamical mean field theory (DMFT), we argue that while the iron atoms in FeGa$_3$ are dominantly in an $S=1$ state, there are strong charge and spin fluctuations on short time scales, which are independent of temperature. Further, the low magnitude of local contributions to the spin susceptibility advocates an itinerant mechanism for the spin response in FeGa$_3$. Our joint experimental and theoretical investigations classify FeGa$_3$ as a correlated band insulator with only small dynamical correlation effects, in which non--local exchange interactions are responsible for the spin gap of 0.4 eV and the antiferromagnetic order. We show that hole doping of FeGa$_3$ leads, within DMFT, to a notable strengthening of many--body renormalizations.
We study the effects of dilute La and Rh doping on the electronic structure of the relativistic Mott insulator Sr$_2$IrO$_4$ using fully relativistic and magnetically non-collinear density functional theory with the inclusion of an on-site Hubbard $U$. To model doping effects, we have adopted the supercell approach that allows for a realistic treatment of structural relaxations and electronic effects beyond a purely rigid band approach. By means of the band unfolding technique we have computed the spectral function and constructed the effective band structure and Fermi surface (FS), which are readily comparable with available experimental data. Our calculations clearly indicate that La and Rh doping can be interpreted as effective electron and (fractional) hole doping, respectively. In Sr$_{2-x}$La$_x$IrO$_4$ the IMT is accompanied by a moderate renormalization of the electronic correlation substantiated by a reduction of the effective on-site Coulomb repulsion $U-J$ from 1.6 eV ($x=0$) to 1.4 eV (metallic regime $x=12.5%$). The progressive closing of the relativistic Mott gap leads to the emergence of connected elliptical electron pockets at ($pi$/2,$pi$/2) and less intense features at $X$ in the FS. The substitution of Ir with the nominally isovalent Rh is accompanied by a substantial hole transfer from the Rh site to the nearest neighbor Ir sites. This shifts down the chemical potential, creates almost circular disconnected hole pockets in the FS and establishes the emergence of a two-dimensional metallic state formed by conducting Rh-planes intercalated by insulating Ir-planes. Finally, our data indicate that hole doping causes a flipping of the in-plane net ferromagnetic moment in the Rh plane and induces a magnetic transition from the AF-I to the AF-II ordering.
Raman scattering experiments on stoichiometric, Mott-insulating LaTiO$_3$ over a wide range of excitation energies reveal a broad electronic continuum which is featureless in the paramagnetic state, but develops a gap of $sim 800$ cm$^{-1}$ upon cooling below the Neel temperature $T_N = 146$ K. In the antiferromagnetic state, the spectral weight below the gap is transferred to well-defined spectral features due to spin and orbital excitations. Low-energy phonons exhibit pronounced Fano anomalies indicative of strong interaction with the electron system for $T > T_N$, but become sharp and symmetric for $T < T_N$. The electronic continuum and the marked renormalization of the phonon lifetime by the onset of magnetic order are highly unusual for Mott insulators and indicate liquid-like correlations between spins and orbitals.
By means of first principles schemes based on magnetically constrained density functional theory and on the band unfolding technique we study the effect of doping on the conducting behaviour of the Lifshitz magnetic insulator NaOsO3. Electron doping is treated realistically within a supercell approach by replacing sodium with magnesium at different concentrations. Our data indicate that by increasing carrier concentration the system is subjected to two types of transition: (i) insulator to bad metal at low doping and low temperature and (ii) bad metal to metal at high doping and/or high-temperature. The predicted doping-induced insulator to metal transition (MIT) has similar traits with the temperature driven MIT reported in the undoped compound. Both develops in an itinerant background and exhibit a coupled electronic and magnetic behaviour characterized by the gradual quenching of the (pseudo)-gap associated with an reduction of the local spin moment. Unlike the temperature-driven MIT, chemical doping induces substantial modifications of the band structure and the MIT cannot be fully described as a Lifshitz process.
Temperature dependent magnetization, muon spin rotation and $^{57}$Fe Mossbauer spectroscopy experiments performed on crystals of intermetallic FeGa$_{3-y}$Ge$_{y}$ ($y=0.11,0.14,0.17,0.22,0.27$, $0.29,0.32$) are reported. Whereas at $y=0.11$ even a sensitive magnetic microprobe such as $mu$SR does not detect magnetism, all other samples display weak ferromagnetism with a magnetic moment of up to 0.22 $mu_B$ per Fe atom. As a function of doping and of temperature a crossover from short range to long range magnetic order is observed, characterized by a broadly distributed spontaneous internal field. However, the $y=0.14$ and $y=0.17$ remain in the short range ordered state down to the lowest investigated temperature. The transition from short range to long range order appears to be accompanied by a change of the character of the spin fluctuations, which exhibit spin wave excitations signature in the LRO part of the phase diagram. Mossbauer spectroscopy for $y=0.27$ and 0.32 indicates that the internal field lies in the plane perpendicular to the crystallographic $c$ axis. The field distribution and its evolution with doping suggest that the details of the Fe magnetic moment formation and the consequent magnetic state are determined not only by the dopant concentration but also by the way the replacement of the Ga atoms surrounding the Fe is accomplished.