A new topological semimetal with iso-energetic Weyl fermions in TaAs under high pressure


Abstract in English

TaAs as one of the experimentally discovered topological Weyl semimetal has attracted intense interests recently. The ambient TaAs has two types of Weyl nodes which are not on the same energy level. As an effective way to tune lattice parameters and electronic interactions, high pressure is becoming a significant tool to explore new materials as well as their exotic states. Therefore, it is highly interesting to investigate the behaviors of topological Weyl fermions and possible structural phase transitions in TaAs under pressure. Here, with a combination of ab initio calculations and crystal structure prediction techniques, a new hexagonal P-6m2 phase is predicted in TaAs at pressure around 14 GPa. Surprisingly, this new phase is a topological semimetal with only single set of Weyl nodes exactly on the same energy level. The phase transition pressure from the experimental measurements, including electrical transport measurements and Raman spectroscopy, agrees with our theoretical prediction reasonably. Moreover, the P-6m2 phase seems to be quenched recoverable to ambient pressure, which increases the possibilities of further study on the exotic behaviors of single set of Weyl fermions, such as the interplay between surface states and other properties.

Download