Do you want to publish a course? Click here

Galaxy Cluster Thermal X-Ray Spectra Constrain Axion-Like Particles

112   0   0.0 ( 0 )
 Added by Andrew J Powell
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Axion-like particles (ALPs) and photons inter-convert in the presence of a magnetic field. At keV energies in the environment of galaxy clusters, the conversion probability can become unsuppressed for light ALPs. Conversion of thermal X-ray photons into ALPs can introduce a step-like feature into the cluster thermal bremsstrahlung spectrum, and we argue that existing X-ray data on galaxy clusters should be sufficient to extend bounds on ALPs in the low-mass region $m_a lesssim 1 times 10^{-12},{rm eV}$ down to $M sim 7times 10^{11}, {rm GeV}$, and that for $10^{11}, {rm GeV} < M lesssim 10^{12}$ GeV light ALPs give rise to interesting and unique observational signatures that may be probed by existing and upcoming X-ray (and potentially X-ray polarisation) observations of galaxy clusters.



rate research

Read More

202 - A. Ringwald 2014
The physics case for axions and axion-like particles is reviewed and an overview of ongoing and near-future laboratory searches is presented.
Quiescent hard X-ray and soft gamma-ray emission from neutron stars constitute a promising frontier to explore axion-like-particles (ALPs). ALP production in the core peaks at energies of a few keV to a few hundreds of keV; subsequently, the ALPs escape and convert to photons in the magnetosphere. The emissivity goes as $sim T^6$ while the conversion probability is enhanced for large magnetic fields, making magnetars, with their high core temperatures and strong magnetic fields, ideal targets for probing ALPs. We compute the energy spectrum of photons resulting from conversion of ALPs in the magnetosphere and then compare it against hard X-ray data from NuSTAR, INTEGRAL, and XMM-Newton, for a set of eight magnetars for which such data exists. Upper limits are placed on the product of the ALP-nucleon and ALP-photon couplings. For the production in the core, we perform a calculation of the ALP emissivity in degenerate nuclear matter modeled by a relativistic mean field theory. The reduction of the emissivity due to improvements to the one-pion exchange approximation is incorporated, as is the suppression of the emissivity due to proton superfluidity in the neutron star core. A range of core temperatures is considered, corresponding to different models of the steady heat transfer from the core to the stellar surface. For the subsequent conversion, we solve the coupled differential equations mixing ALPs and photons in the magnetosphere. The conversion occurs due to a competition between the dipolar magnetic field and the photon refractive index induced by the external magnetic field. Semi-analytic expressions are provided alongside the full numerical results. We also present an analysis of the uncertainty on the axion limits we derive due to the uncertainties in the magnetar masses, nuclear matter equation of state, and the proton superfluid critical temperature.
126 - Wei Cheng , Tao Qian , Qing Yu 2021
In this paper, we investigate the Axion-like Particle inflation by applying the multi-nature inflation model, where the end of inflation is achieved through the phase transition (PT). The events of PT should not be less than $200$, which results in the free parameter $ngeq404$. Under the latest CMB restrictions, we found that the inflation energy is fixed at $10^{15} rm{GeV}$. Then, we deeply discussed the corresponding stochastic background of the primordial gravitational wave (GW) during inflation. We study the two kinds of $n$ cases, i.e., $n=404, 2000$. We observe that the magnitude of $n$ is negligible for the physical observations, such as $n_s$, $r$, $Lambda$, and $Omega_{rm{GW}}h^2$. In the low-frequency regions, the GW is dominated by the quantum fluctuations, and this GW can be detected by Decigo at $10^{-1}~rm{Hz}$. However, GW generated by PT dominates the high-frequency regions, which is expected to be detected by future 3DSR detector.
Axion-like particles with masses in the keV-GeV range have a profound impact on the cosmological evolution of our Universe, in particular on the abundance of light elements produced during Big Bang Nucleosynthesis. The resulting limits are complementary to searches in the laboratory and provide valuable additional information regarding the validity of a given point in parameter space. A potential drawback is that altering the cosmological history may potentially weaken or even fully invalidate these bounds. The main objective of this article is therefore to evaluate the robustness of cosmological constraints on axion-like particles in the keV-GeV region, allowing for various additional effects which may weaken the bounds of the standard scenario. Employing the latest determinations of the primordial abundances as well as information from the cosmic microwave background we find that while bounds can indeed be weakened, very relevant robust constraints remain.
The Peccei-Quinn mechanism presents a neat solution to the strong CP problem. As a by-product, it provides an ideal dark matter candidate, the axion, albeit with a tiny mass. Axions therefore can act as dark radiation if excited with large momenta after the end of inflation. Nevertheless, the recent measurement of relativistic degrees of freedom from cosmic microwave background radiation strictly constrains the abundance of such extra relativistic species. We show that ultra-relativistic axions can be abundantly produced if the Peccei-Quinn field was initially displaced from the minimum of the potential. This in lieu places an interesting constraint on the axion dark matter window with large decay constant which is expected to be probed by future experiments. Moreover, an upper bound on the reheating temperature can be placed, which further constrains the thermal history of our Universe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا