The connection between forward backward doubly stochastic differential equations and the optimal filtering problem is established without using the Zakais equation. The solutions of forward backward doubly stochastic differential equations are expressed in terms of conditional law of a partially observed Markov diffusion process. It then follows that the adjoint time-inverse forward backward doubly stochastic differential equations governs the evolution of the unnormalized filtering density in the optimal filtering problem.
The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.
The purpose of this paper is to provide a detailed probabilistic analysis of the optimal control of nonlinear stochastic dynamical systems of the McKean Vlasov type. Motivated by the recent interest in mean field games, we highlight the connection and the differences between the two sets of problems. We prove a new version of the stochastic maximum principle and give sufficient conditions for existence of an optimal control. We also provide examples for which our sufficient conditions for existence of an optimal solution are satisfied. Finally we show that our solution to the control problem provides approximate equilibria for large stochastic games with mean field interactions.
In this paper we investigate the well-posedness of backward or forward stochastic differential equations whose law is constrained to live in an a priori given (smooth enough) set and which is reflected along the corresponding normal vector. We also study the associated interacting particle system reflected in mean field and asymptotically described by such equations. The case of particles submitted to a common noise as well as the asymptotic system is studied in the forward case. Eventually, we connect the forward and backward stochastic differential equations with normal constraints in law with partial differential equations stated on the Wasserstein space and involving a Neumann condition in the forward case and an obstacle in the backward one.
The BMO martingale theory is extensively used to study nonlinear multi-dimensional stochastic equations (SEs) in $cR^p$ ($pin [1, infty)$) and backward stochastic differential equations (BSDEs) in $cR^ptimes cH^p$ ($pin (1, infty)$) and in $cR^inftytimes bar{cH^infty}^{BMO}$, with the coefficients being allowed to be unbounded. In particular, the probabilistic version of Feffermans inequality plays a crucial role in the development of our theory, which seems to be new. Several new results are consequently obtained. The particular multi-dimensional linear case for SDEs and BSDEs are separately investigated, and the existence and uniqueness of a solution is connected to the property that the elementary solutions-matrix for the associated homogeneous SDE satisfies the reverse Holder inequality for some suitable exponent $pge 1$. Finally, we establish some relations between Kazamakis quadratic critical exponent $b(M)$ of a BMO martingale $M$ and the spectral radius of the solution operator for the $M$-driven SDE, which lead to a characterization of Kazamakis quadratic critical exponent of BMO martingales being infinite.
In this paper we discuss new types of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also the future. We show that these anticipated BSDEs have unique solutions, a comparison theorem for their solutions, and a duality between them and stochastic differential delay equations.
Feng Bao
,Yanzhao Cao
,Xiaoping Han
.
(2015)
.
"Forward Backward Doubly Stochastic Differential Equations and the Optimal Filtering of Diffusion Processes"
.
Feng Bao
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا