Two-photon finite-pulse model for resonant transitions in attosecond experiments


Abstract in English

We present an analytical model capable of describing two-photon ionization of atoms with attosecond pulses in the presence of intermediate and final isolated autoionizing states. The model is based on the finite-pulse formulation of second-order time-dependent perturbation theory. It approximates the intermediate and final states with Fanos theory for resonant continua, and it depends on a small set of atomic parameters that can either be obtained from separate emph{ab initio} calculations, or be extracted from few selected experiments. We use the model to compute the two-photon resonant photoelectron spectrum of helium below the N=2 threshold for the RABITT (Reconstruction of Attosecond Beating by Interference of Two-photon Transitions) pump-probe scheme, in which an XUV attosecond pulse train is used in association to a weak IR probe, obtaining results in quantitative agreement with those from accurate emph{ab initio} simulations. In particular, we show that: i) Use of finite pulses results in a homogeneous red shift of the RABITT beating frequency, as well as a resonant modulation of the beating frequency in proximity of intermediate autoionizing states; ii) The phase of resonant two-photon amplitudes generally experiences a continuous excursion as a function of the intermediate detuning, with either zero or $2pi$ overall variation.

Download