Do you want to publish a course? Click here

Peculiarities of neutron waveguides with thin Gd layer

263   0   0.0 ( 0 )
 Added by Yury Khaydukov N.
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Peculiarities of the formation of a neutron enhanced standing wave in the structure with a thin highly absorbing layer of gadolinium are considered in the article. An analogue of the poisoning effect well known in reactor physics was found. The effect is stronger for the Nb/Gd/Nb system. Despite of this effect, for a Nb/Gd bilayer and a Nb/Gd/Nb trilayer placed between Al2O3 substrate and Cu layer, it is shown theoretically and experimentally that one order of magnitude enhancement of neutron density is possible in the vicinity of the Gd layer. This enhancement makes it possible to study domain formation in the Gd layer under transition of the Nb layer(s) into the superconducting state (cryptoferromagnetic phase).



rate research

Read More

Results of experimental investigations of a neutron resonances width in planar waveguides using the time-of-flight reflectometer REMUR of the IBR-2 pulsed reactor are reported and comparison with theoretical calculations is presented. The intensity of the neutron microbeam emitted from the waveguide edge was registered as a function of the neutron wavelength and the incident beam angular divergence. The possible applications of this method for the investigations of layered nanostructures are discussed.
A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulseshape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.
We evaluate the reflectivity of neutron mirrors composed of certain heavy nuclei which possess strong neutron-nucleus resonances in the eV energy range. We show that the reflectivity of such a mirror for some nuclei can in principle be high enough near energies corresponding to compound neutron-nucleus resonances to be of interest for certain scientific applications in non-destructive evaluation of subsurface material composition and in the theory of neutron optics beyond the kinematic limit.
145 - D. Maire , J. Billard , G. Bosson 2013
In order to measure the energy of neutron fields, with energy ranging from 8 keV to 1 MeV, a new primary standard is being developed at the IRSN (Institute for Radioprotection and Nuclear Safety). This project, micro-TPC (Micro Time Projection Chamber), carried out in collaboration with the LPSC (Laboratoire de Physique Subatomique et de Cosmologie), is based on the nuclear recoil detector principle. The instrument is presented with the associated method to measure the neutron energy. This article emphasizes the proton energy calibration procedure and energy measurements of a neutron field produced at 127 keV with the IRSN facility AMANDE.
326 - B.Blau , M.Daum , M.Fertl 2015
There are worldwide efforts to search for physics beyond the Standard Model of particle physics. Precision experiments using ultracold neutrons (UCN) require very high intensities of UCN. Efficient transport of UCN from the production volume to the experiment is therefore of great importance. We have developed a method using prestored UCN in order to quantify UCN transmission in tubular guides. This method simulates the final installation at the Paul Scherrer Institutes UCN source where neutrons are stored in an intermediate storage vessel serving three experimental ports. This method allowed us to qualify UCN guides for their intended use and compare their properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا