Do you want to publish a course? Click here

On Extensions Between Verma Modules

70   0   0.0 ( 0 )
 Added by Kevin Carlin
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

A recent result of N. Abe implies that the Gabber-Joseph conjecture is true for the first-degree extensions between Verma modules with regular integral highest weights.



rate research

Read More

125 - Chengkang Xu 2021
Let $mathfrak g(G,lambda)$ denote the deformed generalized Heisenberg-Virasoro algebra related to a complex parameter $lambda eq-1$ and an additive subgroup $G$ of $mathbb C$. For a total order on $G$ that is compatible with addition, a Verma module over $mathfrak g(G,lambda)$ is defined. In this paper, we completely determine the irreducibility of these Verma modules.
183 - Ryosuke Kodera 2009
We calculate the first extension groups for finite-dimensional simple modules over an arbitrary generalized current Lie algebra, which includes the case of loop Lie algebras and their multivariable analogs.
We introduce the notion of essential support of a simple Gelfand-Tsetlin $mathfrak{gl}_n$-module as an important tool towards understanding the character formula of such module. This support detects the weights in the module having maximal possible Gelfand-Tsetlin multiplicities. Using combinatorial tools we describe the essential supports of the simple socles of the universal tableaux modules. We also prove that every simple Verma module appears as a socle of a universal tableaux module and hence obtain a description of the essential supports of all simple Verma modules. As a consequence, we prove the Strong Futorny-Ovsienko Conjecture on the sharpness of the upper bounds of the Gelfand-Tsetlin multiplicities. In addition we give a very explicit description of the support and essential support of the simple singular Verma module $M(-rho)$
Khovanov-Lauda-Rouquier algebras of finite Lie type come with families of standard modules, which under the Khovanov-Lauda-Rouquier categorification correspond to PBW-bases of the positive part of the corresponding quantized enveloping algebra. We show that there are no non-zero homomorphisms between distinct standard modules and all non-zero endomorphisms of a standard module are injective. We obtain applications to extensions between standard modules and modular representation theory of KLR algebras.
124 - Hua Sun , Hui-Xiang Chen 2018
In this paper, we investigate the tensor structure of the category of finite dimensional weight modules over the Hopf-Ore extensions $kG(chi^{-1}, a, 0)$ of group algebras $kG$. The tensor product decomposition rules for all indecomposable weight modules are explicitly given under the assumptions that $k$ is an algebraically closed field of characteristic zero, and the orders of $chi$ and $chi(a)$ are the same.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا