No Arabic abstract
The Cherenkov Telescope Array (CTA) is the next generation of ground-based very high energy gamma-ray instruments; the facility will be organized in two arrays, one for each hemisphere. The atmospheric calibration of the CTA telescopes is a critical task. The atmosphere affects the measured Cherenkov yield in several ways: the air-shower development itself, the variation of the Cherenkov angle with altitude, the loss of photons due to scattering and absorption of Cherenkov light out of the camera field-of-view and the scattering of photons into the camera. In this scenario, aerosols are the most variable atmospheric component in time and space and therefore need a continuous monitoring. Lidars are among the most used instruments in atmospheric physics to measure the aerosol attenuation profiles of light. The ARCADE Lidar system is a very compact and portable Raman Lidar system that has been built within the FIRB 2010 grant and is currently taking data in Lamar, Colorado. The ARCADE Lidar is proposed to operate at the CTA sites with the goal of making a first survey of the aerosol conditions of the selected site and to use it as a calibrated benchmark for the other Lidars that will be installed on site. It is proposed for CTA that the ARCADE Lidar will be first upgraded in Italy and then tested in parallel to a Lidar of the EARLINET network in LAquila. Upgrades include the addition of the water vapour Raman channel to the receiver and the use of new and better performing electronics. It is proposed that the upgraded system will travel to and characterize both CTA sites, starting from the first selected site in 2016.
The CTA is the next generation of ground based very high energy gamma ray Imaging Atmospheric Cherenkov Telescopes. Since observations with this technique are affected by atmospheric conditions, an accurate knowledge of the atmospheric properties is fundamental to improve the precision and duty cycle of the CTA. Measurements of absorption and scattering properties of the atmosphere due to aerosols and molecules can be used in the event reconstruction or in MODTRAN, an analytical code designed to model the propagation of electromagnetic radiation. MODTRAN output is used as an input for the air shower simulation and Cherenkov light production, giving the optical depth profiles that together with the refractive index allow the proper simulation of the gamma ray induced signals and a correct measurement of the primary energy from the detected signals. The ARCADE Raman Lidar will be used for the on site characterization of the aerosol attenuation profiles of the UV light. The collected data will be used in preparation for the full operation of the array, providing nightly information about the aerosol properties such as the vertical aerosol optical depth and the water vapour mixing ratio with an altitude resolution better than 100 m from about 400 m to 10 km above ground level. These measurements will help to define the needs for Monte Carlo simulations of the shower development and of the detector response. This instrument will also be used for the intercalibration of the future Raman Lidars that are expected to operate at the CTA sites. This contribution includes a description of the ARCADE Lidar and the characterization of the performance of the system. The system is expected to be shipped to the northern site of the CTA (La Palma) before the end of 2017, to acquire data locally for 1 year before being moved to the southern site (Chile).
The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view $gtrsim 8^circ$ and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov images from atmospheric showers with the GCT multi-anode photomultiplier camera prototype. We also discuss the development of a second GCT camera prototype with silicon photomultipliers as photosensors, and plans toward a contribution to the realisation of CTA.
The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is designed to achieve a threshold energy of 20 GeV. The LST optics is composed of one parabolic primary mirror 23 m in diameter and 28 m focal length. The reflector dish is segmented in 198 hexagonal, 1.51 m flat to flat mirrors. The total effective reflective area, taking into account the shadow of the mechanical structure, is about 368 m$^2$. The mirrors have a sandwich structure consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm thickness, and another glass sheet on the rear, and have a total weight about 47 kg. The mirror surface is produced using a sputtering deposition technique to apply a 5-layer coating, and the mirrors reach a reflectivity of $sim$94% at peak. The mirror facets are actively aligned during operations by an active mirror control system, using actuators, CMOS cameras and a reference laser. Each mirror facet carries a CMOS camera, which measures the position of the light spot of the optical axis reference laser on the target of the telescope camera. The two actuators and the universal joint of each mirror facet are respectively fixed to three neighboring joints of the dish space frame, via specially designed interface plate.
We present the current development of the Monitoring, Logging and Alarm subsystems in the framework of the Array Control and Data Acquisition System (ACADA) for the Cherenkov Telescope Array (CTA). The Monitoring System (MON) is the subsystem responsible for monitoring and logging the overall array (at each of the CTA sites) through the acquisition of monitoring and logging information from the array elements. The MON allows us to perform a systematic approach to fault detection and diagnosis supporting corrective and predictive maintenance to minimize the downtime of the system. We present a unified tool for monitoring data items from the telescopes and other devices deployed at the CTA array sites. Data are immediately available for the operator interface and quick-look quality checks and stored for later detailed inspection. The Array Alarm System (AAS) is the subsystem that provides the service that gathers, filters, exposes, and persists alarms raised by both the ACADA processes and the array elements supervised by the ACADA system. It collects alarms from the telescopes, the array calibration, the environmental monitoring instruments and the ACADA systems. The AAS sub-system also creates new alarms based on the analysis and correlation of the system software logs and the status of the system hardware providing the filter mechanisms for all the alarms. Data from the alarm system are then sent to the operator via the human-machine interface.
The current generation of Cherenkov telescopes is mainly limited in their gamma-ray energy and flux reconstruction by uncertainties in the determination of atmospheric parameters. The Cherenkov Telescope Array (CTA) aims to provide high-precision data extending the duty cycle as much as possible. To reach this goal, it is necessary to continuously and precisely monitor the atmosphere by means of remote-sensing devices, which are able to provide altitude-resolved and wavelength-dependent extinction factors, sensitive up to the tropopause and higher. Raman LIDARs are currently the best suited technology to achieve this goal with one single instrument. However, the synergy with other instruments like radiometers, solar and stellar photometers, all-sky cameras, and possibly radio-sondes is desirable in order to provide more precise and accurate results, and allows for weather forecasts and now-casts. In this contribution, we will discuss the need and features of such multifaceted atmospheric calibration systems.