Do you want to publish a course? Click here

Multiplicative orders of elements in Conway towers of finite fields

90   0   0.0 ( 0 )
 Added by Roman Popovych
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We give a lower bound on multiplicative orders of some elements in defined by Conway towers of finite fields of characteristic two and also formulate a condition under that these elements are primitive

rate research

Read More

327 - Trevor Hyde 2018
We give a simple derivation of the formula for the number of normal elements in an extension of finite fields. Our proof is based on the fact that units in the Galois group ring of a field extension act simply transitively on normal elements.
By definition primitive and $2$-primitive elements of a finite field extension $mathbb{F}_{q^n}$ have order $q^n-1$ and $(q^n-1)/2$, respectively. We have already shown that, with minor reservations, there exists a primitive element and a $2$-primitive element $xi in mathbb{F}_{q^n}$ with prescribed trace in the ground field $mathbb{F}_q$. Here we amend our previous proofs of these results, firstly, by a reduction of these problems to extensions of prime degree $n$ and, secondly, by deriving an exact expression for the number of squares in $mathbb{F}_{q^n}$ whose trace has prescribed value in $mathbb{F}_q$. The latter corrects an error in the proof in the case of $2$-primitive elements. We also streamline the necessary computations.
We consider the Galois group $G_2(K)$ of the maximal unramified $2$-extension of $K$ where $K/mathbb{Q}$ is cyclic of degree $3$. We also consider the group $G^+_2(K)$ where ramification is allowed at infinity. In the spirit of the Cohen-Lenstra heuristics, we identify certain types of pro-$2$ group as the natural spaces where $G_2(K)$ and $G^+_2(K)$ live when the $2$-class group of $K$ is $2$-generated. While we do not have a theoretical scheme for assigning probabilities, we present data and make some observations and conjectures about the distribution of such groups.
Let $mathbb{F}_{q^n}$ be a finite field with $q^n$ elements, and let $m_1$ and $m_2$ be positive integers. Given polynomials $f_1(x), f_2(x) in mathbb{F}_q[x]$ with $textrm{deg}(f_i(x)) leq m_i$, for $i = 1, 2$, and such that the rational function $f_1(x)/f_2(x)$ belongs to a certain set which we define, we present a sufficient condition for the existence of a primitive element $alpha in mathbb{F}_{q^n}$, normal over $mathbb{F}_q$, such that $f_1(alpha)/f_2(alpha)$ is also primitive.
72 - Daniel C. Mayer 2020
For each odd prime p>=5, there exist finite p-groups G with derived quotient G/D(G)=C(p)xC(p) and nearly constant transfer kernel type k(G)=(1,2,...,2) having two fixed points. It is proved that, for p=7, this type k(G) with the simplest possible case of logarithmic abelian quotient invariants t(G)=(11111,111,21,21,21,21,21,21) of the eight maximal subgroups is realized by exactly 98 non-metabelian Schur sigma-groups S of order 7^11 with fixed derived length dl(S)=3 and metabelianizations S/D(D(S)) of order 7^7. For p=5, the type k(G) with t(G)=(2111,111,21,21,21,21) leads to infinitely many non-metabelian Schur sigma-groups S of order at least 5^14 with unbounded derived length dl(S)>=3 and metabelianizations S/D(D(S)) of fixed order 5^7. These results admit the conclusion that d=-159592 is the first known discriminant of an imaginary quadratic field with 7-class field tower of precise length L=3, and d=-90868 is a discriminant of an imaginary quadratic field with 5-class field tower of length L>=3, whose exact length remains unknown.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا