Do you want to publish a course? Click here

Massless renormalization group flow in SU(N)$_k$ perturbed conformal field theory

73   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the infrared properties of SU(N)$_k$ conformal field theory perturbed by its adjoint primary field in 1+1 dimensions. The latter field theory is shown to govern the low-energy properties of various SU(N) spin chain problems. In particular, using a mapping onto k-leg SU(N) spin ladder, a massless renormalization group flow to SU(N)$_1$ criticality is predicted when N and k have no common divisor. The latter result extends the well-known massless flow between SU(2)$_k$ and SU(2)$_1$ Wess-Zumino-Novikov-Witten theories when k is odd in connection to the Haldanes conjecture on SU(2) Heisenberg spin chains. A direct approach is presented in the simplest N=3 and k=2 case to investigate the existence of this massless flow.



rate research

Read More

We study the $SU(2)_k$ Wess-Zumino-Novikov-Witten (WZNW) theory perturbed by the trace of the primary field in the adjoint representation, a theory governing the low-energy behaviour of a class of strongly correlated electronic systems. While the model is non-integrable, its dynamics can be investigated using the numerical technique of the truncated conformal spectrum approach combined with numerical and analytical renormalization groups (TCSA+RG). The numerical results so obtained provide support for a semiclassical analysis valid at $kgg 1$. Namely, we find that the low energy behavior is sensitive to the sign of the coupling constant, $lambda$. Moreover for $lambda>0$ this behavior depends on whether $k$ is even or odd. With $k$ even, we find definitive evidence that the model at low energies is equivalent to the massive $O(3)$ sigma model. For $k$ odd, the numerical evidence is more equivocal, but we find indications that the low energy effective theory is critical.
We compute the entanglement entropy of the Wilson-Fisher conformal field theory (CFT) in 2+1 dimensions with O($N$) symmetry in the limit of large $N$ for general entanglement geometries. We show that the leading large $N$ result can be obtained from the entanglement entropy of $N$ Gaussian scalar fields with their mass determined by the geometry. For a few geometries, the universal part of the entanglement entropy of the Wilson-Fisher CFT equals that of a CFT of $N$ massless scalar fields. However, in most cases, these CFTs have a distinct universal entanglement entropy even at $N=infty$. Notably, for a semi-infinite cylindrical region it scales as $N^0$, in stark contrast to the $N$-linear result of the Gaussian fixed point.
345 - Haozhao Liang , Yifei Niu , 2017
Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the $varphi^4$ theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.
We study t Hooft anomalies of symmetry-enriched rational conformal field theories (RCFT) in (1+1)d. Such anomalies determine whether a theory can be realized in a truly (1+1)d system with on-site symmetry, or on the edge of a (2+1)d symmetry-protected topological phase. RCFTs with the identical symmetry actions on their chiral algebras may have different t Hooft anomalies due to additional symmetry charges on local primary operators. To compute the relative anomaly, we establish a precise correspondence between (1+1)d non-chiral RCFTs and (2+1)d doubled symmetry-enriched topological (SET) phases with a choice of symmetric gapped boundary. Based on these results we derive a general formula for the relative t Hooft anomaly in terms of algebraic data that characterizes the SET phase and its boundary.
The pseudofermion functional renormalization group (pf-FRG) is one of the few numerical approaches that has been demonstrated to quantitatively determine the ordering tendencies of frustrated quantum magnets in two and three spatial dimensions. The approach, however, relies on a number of presumptions and approximations, in particular the choice of pseudofermion decomposition and the truncation of an infinite number of flow equations to a finite set. Here we generalize the pf-FRG approach to SU(N)-spin systems with arbitrary N and demonstrate that the scheme becomes exact in the large-N limit. Numerically solving the generalized real-space renormalization group equations for arbitrary N, we can make a stringent connection between the physically most significant case of SU(2)-spins and more accessible SU(N) models. In a case study of the square-lattice SU(N) Heisenberg antiferromagnet, we explicitly demonstrate that the generalized pf-FRG approach is capable of identifying the instability indicating the transition into a staggered flux spin liquid ground state in these models for large, but finite values of N. In a companion paper (arXiv:1711.02183) we formulate a momentum-space pf-FRG approach for SU(N) spin models that allows us to explicitly study the large-N limit and access the low-temperature spin liquid phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا