Do you want to publish a course? Click here

Using an InGrid Detector to Search for Solar Chameleons with CAST

229   0   0.0 ( 0 )
 Added by Klaus Desch
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the construction, operation experience, and preliminary background measurements of an InGrid detector, i.e. a MicroMegas detector with CMOS pixel readout. The detector was mounted in the focal plane of the Abrixas X-Ray telescope at the CAST experiment at CERN. The detector is sensitive to soft X-Rays in a broad energy range (0.3--10 keV) and thus enables the search for solar chameleons. Smooth detector operation during CAST data taking in autumn 2014 has been achieved. Preliminary analysis of background data indicates a background rate of $1-5times 10^{-5},mathrm{keV}^{-1}mathrm{cm}^{-2}mathrm{s}^{-1}$ above 2 keV and $sim 3times 10^{-4},mathrm{keV}^{-1}mathrm{cm}^{-2}mathrm{s}^{-1}$ around 1 keV. An expected limit of $beta_gamma lesssim 5times 10^{10}$ on the chameleon photon coupling is estimated in case of absence of an excess in solar tracking data. We also discuss the prospects for future operation of the detector.



rate research

Read More

We report on a new search for solar chameleons with the CERN Axion Solar Telescope (CAST). A GridPix detector was used to search for soft X-ray photons in the energy range from 200 eV to 10 keV from converted solar chameleons. No signiffcant excess over the expected background has been observed in the data taken in 2014 and 2015. We set an improved limit on the chameleon photon coupling, $beta_gamma < 5.7times10^{10}$ for $1<beta_mathrm{m}<10^6$ at 95% C.L. improving our previous results by a factor two and for the first time reaching sensitivity below the solar luminosity bound for tachocline magnetic fields up to $12.5,mathrm{T}$.
In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter ($beta_{rm m}$) and to photons ($beta_{gamma}$) via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1$,$keV to 400$,$eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600$,$eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons to photons of $beta_{gamma}!lesssim!10^{11}$ for $1<beta_{rm m}<10^6$.
We report on a first measurement with a sensitive opto-mechanical force sensor designed for the direct detection of coupling of real chameleons to matter. These dark energy candidates could be produced in the Sun and stream unimpeded to Earth. The KWISP detector installed on the CAST axion search experiment at CERN looks for tiny displacements of a thin membrane caused by the mechanical effect of solar chameleons. The displacements are detected by a Michelson interferometer with a homodyne readout scheme. The sensor benefits from the focusing action of the ABRIXAS X-ray telescope installed at CAST, which increases the chameleon flux on the membrane. A mechanical chopper placed between the telescope output and the detector modulates the incoming chameleon stream. We present the results of the solar chameleon measurements taken at CAST in July 2017, setting an upper bound on the force acting on the membrane of $80$~pN at 95% confidence level. The detector is sensitive for direct coupling to matter $10^4 leqbeta_m leq 10^8$, where the coupling to photons is locally bound to $beta_gamma leq 10^{11}$.
The Relic Axion Detector Experimental Setup (RADES) is an axion search project that uses a microwave filter as resonator for Dark Matter conversion. The main focus of this publication is the description of the 3 different cavity prototypes of RADES. The result of the first tests of one of the prototypes is also presented. The filters consist of 5 or 6 stainless steel sub-cavities joined by rectangular irises. The size of the sub-cavities determines the working frequency, the amount of sub-cavities determine the working volume. The first cavity prototype was built in 2017 to work at a frequency of $sim$ 8.4 GHz and it was placed at the 9 T CAST dipole magnet at CERN. Two more prototypes were designed and built in 2018. The aim of the new designs is to find and test the best cavity geometry in order to scale up in volume and to introduce an effective tuning mechanism. Our results demonstrate the promising potential of this type of filter to reach QCD axion sensitivity at X-Band frequencies.
201 - K. Abe , N. Abgrall , Y. Ajima 2011
Precise measurement of neutrino beam direction and intensity was achieved based on a new concept with modularized neutrino detectors. INGRID (Interactive Neutrino GRID) is an on-axis near detector for the T2K long baseline neutrino oscillation experiment. INGRID consists of 16 identical modules arranged in horizontal and vertical arrays around the beam center. The module has a sandwich structure of iron target plates and scintillator trackers. INGRID directly monitors the muon neutrino beam profile center and intensity using the number of observed neutrino events in each module. The neutrino beam direction is measured with accuracy better than 0.4 mrad from the measured profile center. The normalized event rate is measured with 4% precision.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا