Do you want to publish a course? Click here

Coupling Identical 1D Many-Body Localized Systems

90   0   0.0 ( 0 )
 Added by Ulrich Schneider
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We experimentally study the effects of coupling one-dimensional Many-Body Localized (MBL) systems with identical disorder. Using a gas of ultracold fermions in an optical lattice, we artifically prepare an initial charge density wave in an array of 1D tubes with quasi-random onsite disorder and monitor the subsequent dynamics over several thousand tunneling times. We find a strikingly different behavior between MBL and Anderson Localization. While the non-interacting Anderson case remains localized, in the interacting case any coupling between the tubes leads to a delocalization of the entire system.



rate research

Read More

Strongly correlated systems can exhibit surprising phenomena when brought in a state far from equilibrium. A spectacular example are quantum avalanches, that have been predicted to run through a many-body--localized system and delocalize it. Quantum avalanches occur when the system is locally coupled to a small thermal inclusion that acts as a bath. Here we realize an interface between a many-body--localized system and a thermal inclusion of variable size, and study its dynamics. We find evidence for accelerated transport into the localized region, signature of a quantum avalanche. By measuring the site-resolved entropy we monitor how the avalanche travels through the localized system and thermalizes it site by site. Furthermore, we isolate the bath-induced dynamics by evaluating multipoint correlations between the bath and the system. Our results have fundamental implications on the robustness of many-body--localized systems and their critical behavior.
119 - Oliver Lunt , Arijeet Pal 2020
The resilience of quantum entanglement to a classicality-inducing environment is tied to fundamental aspects of quantum many-body systems. The dynamics of entanglement has recently been studied in the context of measurement-induced entanglement transitions, where the steady-state entanglement collapses from a volume-law to an area-law at a critical measurement probability $p_{c}$. Interestingly, there is a distinction in the value of $p_{c}$ depending on how well the underlying unitary dynamics scramble quantum information. For strongly chaotic systems, $p_{c} > 0$, whereas for weakly chaotic systems, such as integrable models, $p_{c} = 0$. In this work, we investigate these measurement-induced entanglement transitions in a system where the underlying unitary dynamics are many-body localized (MBL). We demonstrate that the emergent integrability in an MBL system implies a qualitative difference in the nature of the measurement-induced transition depending on the measurement basis, with $p_{c} > 0$ when the measurement basis is scrambled and $p_{c} = 0$ when it is not. This feature is not found in Haar-random circuit models, where all local operators are scrambled in time. When the transition occurs at $p_{c} > 0$, we use finite-size scaling to obtain the critical exponent $ u = 1.3(2)$, close to the value for 2+0D percolation. We also find a dynamical critical exponent of $z = 0.98(4)$ and logarithmic scaling of the R{e}nyi entropies at criticality, suggesting an underlying conformal symmetry at the critical point. This work further demonstrates how the nature of the measurement-induced entanglement transition depends on the scrambling nature of the underlying unitary dynamics. This leads to further questions on the control and simulation of entangled quantum states by measurements in open quantum systems.
In a many-body localized (MBL) quantum system, the ergodic hypothesis breaks down completely, giving rise to a fundamentally new many-body phase. Whether and under which conditions MBL can occur in higher dimensions remains an outstanding challenge both for experiments and theory. Here, we experimentally explore the relaxation dynamics of an interacting gas of fermionic potassium atoms loaded in a two-dimensional optical lattice with different quasi-periodic potentials along the two directions. We observe a dramatic slowing down of the relaxation for intermediate disorder strengths and attribute this partially to configurational rare-region effects. Beyond a critical disorder strength, we see negligible relaxation on experimentally accessible timescales, indicating a possible transition into a two-dimensional MBL phase. Our experiments reveal a distinct interplay of interactions, disorder, and dimensionality and provide insights into regimes where controlled theoretical approaches are scarce.
In the presence of sufficiently strong disorder or quasiperiodic fields, an interacting many-body system can fail to thermalize and become many-body localized. The associated transition is of particular interest, since it occurs not only in the ground state but over an extended range of energy densities. So far, theoretical studies of the transition have focused mainly on the case of true-random disorder. In this work, we experimentally and numerically investigate the regime close to the many-body localization transition in quasiperiodic systems. We find slow relaxation of the density imbalance close to the transition, strikingly similar to the behavior near the transition in true-random systems. This dynamics is found to continuously slow down upon approaching the transition and allows for an estimate of the transition point. We discuss possible microscopic origins of these slow dynamics.
Phase transitions are driven by collective fluctuations of a systems constituents that emerge at a critical point. This mechanism has been extensively explored for classical and quantum systems in equilibrium, whose critical behavior is described by a general theory of phase transitions. Recently, however, fundamentally distinct phase transitions have been discovered for out-of-equilibrium quantum systems, which can exhibit critical behavior that defies this description and is not well understood. A paradigmatic example is the many-body-localization (MBL) transition, which marks the breakdown of quantum thermalization. Characterizing quantum critical behavior in an MBL system requires the measurement of its entanglement properties over space and time, which has proven experimentally challenging due to stringent requirements on quantum state preparation and system isolation. Here, we observe quantum critical behavior at the MBL transition in a disordered Bose-Hubbard system and characterize its entanglement properties via its quantum correlations. We observe strong correlations, whose emergence is accompanied by the onset of anomalous diffusive transport throughout the system, and verify their critical nature by measuring their system-size dependence. The correlations extend to high orders in the quantum critical regime and appear to form via a sparse network of many-body resonances that spans the entire system. Our results unify the systems microscopic structure with its macroscopic quantum critical behavior, and they provide an essential step towards understanding criticality and universality in non-equilibrium systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا