No Arabic abstract
The assumption of Lorentz invariance is one of the founding principles of modern physics and violation of that would have deep consequences to our understanding of the universe. Potential signatures of such a violation could range from energy dependent dispersion introduced into a light curve to a change in the photon-photon pair production threshold that changes the expected opacity of the universe. Astronomical sources of Very High Energy (VHE) photons can be used as test beams to probe fundamental physics phenomena, however, such effects would likely be small and need to be disentangled from intrinsic source physics processes. The Cherenkov Telescope Array (CTA) will be the next generation ground based observatory of VHE photons. It will have improved flux sensitivity, a lower energy threshold (tens of GeV), broader energy coverage (nearly 5 decades) and improved energy resolution (better than 10% over much of the energy range) compared to current facilities in addition to excellent time resolution for short timescale and rapidly varying phenomena. The expected sensitivity of this facility leads to us to examine in this contribution the kinds of limits to Lorentz Invariance Violation (LIV) that we could expect to obtain on VHE observations of Active Galactic Nuclei (AGN), Gamma Ray Bursts (GRBs) and pulsars with CTA. With a statistical sample and wide variety of sources CTA has the potential to set model independent limits.
The assumption of Lorentz invariance is one of the founding principles of Modern Physics and violation of it would have profound implications to our understanding of the universe. For instance, certain theories attempting a unified theory of quantum gravity predict there could be an effective refractive index of the vacuum; the introduction of an energy dependent dispersion to photons could in turn lead to an observable Lorentz invariance violation signature. Whilst a very small effect on local scales the effect will be cumulative, and so for very high energy particles that travel very large distances the difference in arrival times could become sufficiently large to be detectable. This proceedings will look at testing for such Lorentz invariance violation (LIV) signatures in the astronomical lightcurves of gamma-ray emitting objects, with particular notice being given to the prospects for LIV testing with, the next generation observatory, the Cherenkov Telescope Array.
In the last years a general consensus has emerged on the use of ultra-high energy cosmic rays (UHECR) data as a powerful probe of the validity of special relativity. This applies in particular to the propagation of cosmic rays from their sources to Earth, responsible for energy suppressions due to pion photoproduction by UHE protons (the Greisen-Zatsepin Kuzmin limit) and photo disintegration of UHE nuclei (the Gerasimova-Rozental limit). A suppression in the flux of UHECRs at energies above 40 EeV -- as expected from both these interactions -- has been established experimentally beyond any doubt by current experiments. However, such an observation is still not conclusive on the origin of the suppression. In particular, data from the Pierre Auger Observatory can be interpreted in a scenario in which the suppression is due to the maximum acceleration energy at the sources rather than to interactions in the background radiation. In this scenario, UHECR data can no longer yield bounds on Lorentz invariance violations which increase the thresholds for interactions of nuclei on background photons, in particular through modification of the dispersion relations. Here we argue in turn that the study of UHECRs still represents an opportunity to test Lorentz invariance, by discussing the possibility of deriving limits on violation parameters from UHECR phenomena other than propagation. In particular we study the modifications of the shower development in the atmosphere due to the possible inhibition of the decay of unstable particles, especially neutral pions.
In the last few years, the Fermi-LAT telescope has discovered over a 100 pulsars at energies above 100 MeV, increasing the number of known gamma-ray pulsars by an order of magnitude. In parallel, imaging Cherenkov telescopes, such as MAGIC and VERITAS, have detected for the first time VHE pulsed gamma-rays from the Crab pulsar. Such detections have revealed that the Crab VHE spectrum follows a power-law up to at least 400 GeV, challenging most theoretical models, and opening wide possibilities of detecting more pulsars from the ground with the future Cherenkov Telescope Array (CTA). In this contribution, we study the capabilities of CTA for detecting Fermi pulsars. For this, we extrapolate their spectra with Crab-like power-law tails in the VHE range, as suggested by the latest MAGIC and VERITAS results.
It has been speculated that Lorentz-invariance violation (LIV) might be generated by quantum-gravity (QG) effects. As a consequence, particles may not travel at the universal speed of light. In particular, superluminal extragalactic neutrinos would rapidly lose energy via the bremssthralung of electron-positron pairs (nu -> nu e+ e-), damping their initial energy into electromagnetic cascades, a figure constrained by Fermi-LAT data. We show that the two cascade neutrino events with energies around 1 PeV recently detected by IceCube -if attributed to extragalactic diffuse events, as it appears likely- can place the strongest bound on LIV in the neutrino sector, namely delta =(v^2-1) < O(10^(-18)), corresponding to a QG scale M_QG ~ 10^5 M_Pl (M_QG >~ 10^(-4) M_Pl) for a linear (quadratic) LIV, at least for models inducing superluminal neutrino effects (delta > 0).
Several types of Galactic sources, like magnetars, microquasars, novae or pulsar wind nebulae flares, display transient emission in the X-ray band. Some of these sources have also shown emission at MeV--GeV energies. However, none of these Galactic transients have ever been detected in the very-high-energy (VHE; E$>$100 GeV) regime by any Imaging Air Cherenkov Telescope (IACT). The Galactic Transient task force is a part of the Transient Working group of the Cherenkov Telescope Array (CTA) Consortium. The task force investigates the prospects of detecting the VHE counterpart of such sources, as well as their study following Target of Opportunity (ToO) observations. In this contribution, we will show some of the results of exploring the capabilities of CTA to detect and observe Galactic transients; we assume different array configurations and observing strategies.