A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron/gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell long axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.
The Precision Reactor Oscillation and Spectrum Experiment, PROSPECT, is designed to make both a precise measurement of the antineutrino spectrum from a highly-enriched uranium reactor and to probe eV-scale sterile neutrinos by searching for neutrino oscillations over meter-long baselines. PROSPECT utilizes a segmented $^6$Li-doped liquid scintillator detector for both efficient detection of reactor antineutrinos through the inverse beta decay reaction and excellent background discrimination. PROSPECT is a movable 4-ton antineutrino detector covering distances of 7m to 13m from the High Flux Isotope Reactor core. It will probe the best-fit point of the $bar u_e$ disappearance experiments at 4$sigma$ in 1 year and the favored regions of the sterile neutrino parameter space at more than 3$sigma$ in 3 years. PROSPECT will test the origin of spectral deviations observed in recent $theta_{13}$ experiments, search for sterile neutrinos, and address the hypothesis of sterile neutrinos as an explanation of the reactor anomaly. This paper describes the design, construction, and commissioning of PROSPECT and reports first data characterizing the performance of the PROSPECT antineutrino detector.
We present a characterization of a small (9-liter) and mobile 0.1% 6Li-doped pulse-shape-sensitive plastic scintillator antineutrino detector called SANDD (Segmented AntiNeutrino Directional Detector), constructed for the purpose of near-field reactor monitoring with sensitivity to antineutrino direction. SANDD comprises three different types of module. A detailed Monte Carlo simulation code was developed to match and validate the performance of each of the three modules. The combined model was then used to produce a prediction of the performance of the entire detector. Analysis cuts were established to isolate antineutrino inverse beta decay events while rejecting large fraction of backgrounds. The neutron and positron detection efficiencies are estimated to be 34.8% and 80.2%, respectively, while the coincidence detection efficiency is estimated to be 71.7%, resulting in inverse beta decay detection efficiency of 20.05 +/- 0.2%(stat.) +/- 2.1%(syst.). The predicted directional sensitivity of SANDD produces an uncertainty of 20 degree in the azimuthal direction per 100 detected antineutrino events.
Current models of antineutrino production in nuclear reactors predict detection rates and spectra at odds with the existing body of direct reactor antineutrino measurements. High-resolution antineutrino detectors operated close to compact research reactor cores can produce new precision measurements useful in testing explanations for these observed discrepancies involving underlying nuclear or new physics. Absolute measurement of the 235U-produced antineutrino spectrum can provide additional constraints for evaluating the accuracy of current and future reactor models, while relative measurements of spectral distortion between differing baselines can be used to search for oscillations arising from the existence of eV-scale sterile neutrinos. Such a measurement can be performed in the United States at several highly-enriched uranium fueled research reactors using near-surface segmented liquid scintillator detectors. We describe here the conceptual design and physics potential of the PROSPECT experiment, a U.S.-based, multi-phase experiment with reactor-detector baselines of 7-20 meters capable of addressing these and other physics and detector development goals. Current R&D status and future plans for PROSPECT detector deployment and data-taking at the High Flux Isotope Reactor at Oak Ridge National Laboratory will be discussed.
A successfull application of Geiger-mode multipixel avalanche diodes (GMAPDs) for pulse-shape discrimination in alpha-beta spectrometry using organic liquid scintillator is described in this paper. Efficient discrimination of alpha and beta components in the emission of radioactive isotopes is achieved for alpha energies above 0.3 MeV. The ultra-compact design of the scintillating detector helps to efficiently suppress cosmic-ray and ambient radiation background. This approach allows construction of hand-held robust devices for monitoring of radioactive contamination in various environmental conditions.
This paper describes the design and performance of a 50 liter, two-segment $^{6}$Li-loaded liquid scintillator detector that was designed and operated as prototype for the PROSPECT (Precision Reactor Oscillation and Spectrum) Experiment. The two-segment detector was constructed according to the design specifications of the experiment. It features low-mass optical separators, an integrated source and optical calibration system, and materials that are compatible with the $^{6}$Li-doped scintillator developed by PROSPECT. We demonstrate a high light collection of 850$pm$20 PE/MeV, an energy resolution of $sigma$ = 4.0$pm$0.2% at 1 MeV, and efficient pulse-shape discrimination of low $dE/dx$ (electronic recoil) and high $dE/dx$ (nuclear recoil) energy depositions. An effective scintillation attenuation length of 85$pm$3 cm is measured in each segment. The 0.1% by mass concentration of $^{6}$Li in the scintillator results in a measured neutron capture time of $tau$ = 42.8$pm$0.2 $mu s$. The long-term stability of the scintillator is also discussed. The detector response meets the criteria necessary for achieving the PROSPECT physics goals and demonstrates features that may find application in fast neutron detection.
J. Ashenfelter
,B. Balantekin
,H. R. Band
.
(2015)
.
"Light Collection and Pulse-Shape Discrimination in Elongated Scintillator Cells for the PROSPECT Reactor Antineutrino Experiment"
.
B.R. Littlejohn
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا