No Arabic abstract
In this paper we further investigate the relationship, reported by Oates et al., 2012, between the optical/UV afterglow luminosity (measured at restframe 200s) and average afterglow decay rate (measured from restframe 200s onwards) of long duration Gamma-ray Bursts (GRBs). We extend the analysis by examining the X-ray light curves, finding a consistent correlation. We therefore explore how the parameters of these correlations relate to the prompt emission phase and, using a Monte Carlo simulation, explore whether these correlations are consistent with predictions of the standard afterglow model. We find significant correlations between: $rm log;L_{O,200rm{s}}$ and $rm log;L_{X,200rm{s}}$; $alpha_{O,>200rm{s}}$ and $alpha_{X,>200rm{s}}$, consistent with simulations. The model also predicts relationships between $rm log;E_{iso}$ and $rm log;L_{200rm{s}}$, however, while we find such relationships in the observed sample, the slope of the linear regression is shallower than that simulated and inconsistent at $gtrsim 3sigma$. Simulations also do not agree with correlations observed between $rm log;L_{200rm{s}}$ and $alpha_{>200rm{s}}$, or $rm log;E_{iso}$ and $alpha_{>200rm{s}}$. Overall, these observed correlations are consistent with a common underlying physical mechanism producing GRBs and their afterglows regardless of their detailed temporal behaviour. However, a basic afterglow model has difficulty explaining all the observed correlations. This leads us to briefly discuss alternative more complex models.
The fireshell model for Gamma-Ray Bursts (GRBs) naturally leads to a canonical GRB composed of a proper-GRB (P-GRB) and an afterglow. P-GRBs, introduced by us in 2001, are sometimes considered precursors of the main GRB event in the current literature. We show in this paper how the fireshell model leads to the understanding of the structure of GRBs, with precise estimates of the time sequence and intensities of the P-GRB and the of the afterglow. It leads as well to a natural classification of the canonical GRBs which overcomes the traditional one in short and long GRBs.
Aims: We characterize a sample of Gamma-Ray Bursts with low luminosity X-ray afterglows (LLA GRBs), and study their properties. Method: We select a sample consisting of the 12% faintest X-ray afterglows from the total population of long GRBs (lGRBs) with known redshift. We study their intrinsic properties (spectral index, decay index, distance, luminosity, isotropic radiated energy and peak energy) to assess whether they belong to the same population than the brighter afterglow events. Results: We present strong evidences that these events belong to a population of nearby events, different from that of the general population of lGRBs. These events are faint during their prompt phase, and include the few possible outliers of the Amati relation. Out of 14 GRB-SN associations, 9 are in LLA GRB sample, prompting for caution when using SN templates in observational and theoretical models for the general lGRBs population.
We present post-jet-break textit{HST}, VLA and textit{Chandra} observations of the afterglow of the long $gamma$-ray bursts GRB 160625B (between 69 and 209 days) and GRB 160509A (between 35 and 80 days). We calculate the post-jet-break decline rates of the light curves, and find the afterglow of GRB 160625B inconsistent with a simple $t^{-3/4}$ steepening over the break, expected from the geometric effect of the jet edge entering our line of sight. However, the favored optical post-break decline ($f_{ u} propto t^{-1.96 pm 0.07}$) is also inconsistent with the $f_{ u} propto t^{-p}$ decline (where $p approx 2.3$ from the pre-break light curve), which is expected from exponential lateral expansion of the jet; perhaps suggesting lateral expansion that only affects a fraction of the jet. The post-break decline of GRB 160509A is consistent with both the $t^{-3/4}$ steepening and with $f_{ u} propto t^{-p}$. We also use {sc boxfit} to fit afterglow models to both light curves and find both to be energetically consistent with a millisecond magnetar central engine, although the magnetar parameters need to be extreme (i.e. $E sim 3 times 10^{52}$ erg). Finally, the late-time radio light curves of both afterglows are not reproduced well by {sc boxfit} and are inconsistent with predictions from the standard jet model; instead both are well represented by a single power law decline (roughly $f_{ u} propto t^{-1}$) with no breaks. This requires a highly chromatic jet break ($t_{j,mathrm{radio}} > 10 times t_{j,mathrm{optical}}$) and possibly a two-component jet for both bursts.
The synchrotron self-Compton (SSC) emission from Gamma-ray Burst (GRB) forward shock can extend to the very-high-energy (VHE; $E_gamma > $100 GeV) range. Such high energy photons are rare and are attenuated by the cosmic infrared background before reaching us. In this work, we discuss the prospect to detect these VHE photons using the current ground-based Cherenkov detectors. Our calculated results are consistent with the upper limits obtained with several Cherenkov detectors for GRB 030329, GRB 050509B, and GRB 060505 during the afterglow phase. For 5 bursts in our nearby GRB sample (except for GRB 030329), current ground-based Cherenkov detectors would not be expected to detect the modeled VHE signal. Only for those very bright and nearby bursts like GRB 030329, detection of VHE photons is possible under favorable observing conditions and a delayed observation time of $la$10 hours.
Long-duration gamma-ray bursts (LGRBs) are the signatures of extraordinarily high-energy events occurring in our universe. Since their discovery, we have determined that these events are produced during the core-collapse deaths of rare young massive stars. The host galaxies of LGRBs are an excellent means of probing the environments and populations that produce their unusual progenitors. In addition, these same young stellar progenitors makes LGRBs and their host galaxies valuable potentially powerful tracers of star formation and metallicity at high redshifts. However, properly utilizing LGRBs as probes of the early universe requires a thorough understanding of their formation and the host environments that they sample. This review looks back at some of the recent work on LGRB host galaxies that has advanced our understanding of these events and their cosmological applications, and considers the many new questions that we are poised to pursue in the coming years.