No Arabic abstract
We present Karl G. Jansky Very Large Array (VLA) Ka band (33 GHz) and Atacama Large Millimeter Array (ALMA) Band 3 (94.5 GHz) continuum images covering the nucleus and two extranuclear star-forming regions within the nearby galaxy NGC 3627 (M 66), observed as part of the Star Formation in Radio Survey (SFRS). Both images achieve an angular resolution of $lesssim$2arcsec, allowing us to map the radio spectral indices and estimate thermal radio fractions at a linear resolution of $lesssim$90 pc at the distance of NGC 3627. The thermal fraction at 33 GHz reaches unity at and around the peaks of each HII region; we additionally observed the spectral index between 33 and 94.5 GHz to become both increasingly negative and positive away from the peaks of the HII regions, indicating an increase of non-thermal extended emission from diffusing cosmic-ray electrons and the possible presence of cold dust, respectively. While the ALMA observations were optimized for collecting continuum data, they also detected line emission from the $J=1rightarrow0$ transitions of HCN and HCO$^{+}$. The peaks of dense molecular gas traced by these two spectral lines are spatially offset from the peaks of the 33 and 94.5 GHz continuum emission for the case of the extranuclear star-forming regions, indicating that our data reach an angular resolution at which one can spatially distinguish sites of recent star formation from the sites of future star formation. Finally, we find trends of decreasing dense gas fraction and velocity dispersion with increasing star formation efficiency among the three regions observed, indicating that the dynamical state of the dense gas, rather than its abundance, plays a more significant role in the star formation process.
We present ALMA Cycle 1 observations of the central kpc region of the luminous type-1 Seyfert galaxy NGC 7469 with unprecedented high resolution (0.5$$ $times$ 0.4$$ = 165 pc $times$ 132 pc) at submillimeter wavelengths. Utilizing the wide-bandwidth of ALMA, we simultaneously obtained HCN(4-3), HCO$^+$(4-3), CS(7-6), and partially CO(3-2) line maps, as well as the 860 $mu$m continuum. The region consists of the central $sim$ 1$$ component and the surrounding starburst ring with a radius of $sim$ 1.5$$-2.5$$. Several structures connect these components. Except for CO(3-2), these dense gas tracers are significantly concentrated towards the central $sim$ 1$$, suggesting their suitability to probe the nuclear regions of galaxies. Their spatial distribution resembles well those of centimeter and mid-infrared continuum emissions, but it is anti-correlated with the optical one, indicating the existence of dust obscured star formation. The integrated intensity ratios of HCN(4-3)/HCO$^+$(4-3) and HCN(4-3)/CS(7-6) are higher at the AGN position than at the starburst ring, which is consistent to our previous findings (submm-HCN enhancement). However, the HCN(4-3)/HCO$^+$(4-3) ratio at the AGN position of NGC 7469 (1.11$pm$0.06) is almost half of the corresponding value of the low-luminosity type-1 Seyfert galaxy NGC 1097 (2.0$pm$0.2), despite the more than two orders of magnitude higher X-ray luminosity of NGC 7469. But the ratio is comparable to that of the close vicinity of the AGN of NGC 1068 ($sim$ 1.5). Based on these results, we speculate that some other heating mechanisms than X-ray (e.g., mechanical heating due to AGN jet) can contribute significantly for shaping the chemical composition in NGC 1097.
Compared to their centimeter-wavelength counterparts, millimeter recombination lines (RLs) are intrinsically brighter and are free of pressure broadening. We report observations of RLs (H30alpha at 231.9 GHz, H53alpha at 42.9 GHz) and the millimeter and centimeter continuum toward the Becklin-Neugebauer (BN) object in Orion, obtained from the Atacama Large Millimeter/submillimeter Array (ALMA) Science Verification archive and the Very Large Array (VLA). The RL emission appears to be arising from the slowly-moving, dense (Ne=8.4x10^6 cm^-3) base of the ionized envelope around BN. This ionized gas has a relatively low electron temperature (Te<4900 K) and small (<<10 km s^-1) bulk motions. Comparing our continuum measurements with previous (non)detections, it is possible that BN has large flux variations in the millimeter. However, dedicated observations with a uniform setup are needed to confirm this. From the H30alpha line, the central line-of-sight LSR velocity of BN is 26.3 km s^-1.
We present the results of our ALMA Cycle 0 observations, using HCN/HCO+/HNC J=4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO+ J=4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J=1-0 transition, while there is no clear difference in the HCN-to-HNC J=4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO+ J=4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J=4-3 emission relative to HCO+ J=4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.
We present 1 (<100 pc) resolution maps of millimeter emission from five molecules-CN, HCN, HCO+, CH3OH, and HNCO-obtained towards NGC 4038, which is the northern galaxy of the mid-stage merger, Antennae galaxies, with the Atacama Large Millimeter/submillimeter Array. Three molecules (CN, CH3OH, and HNCO) were detected for the first time in the nuclear region of NGC 4038. High-resolution mapping reveals a systematic difference in distributions of different molecular species and continuum emission. Active star forming regions identified by the 3 mm and 850 um continuum emission are offset from the gas-rich region associated with the HCN (1-0) and CO (3-2) peaks. The CN (1-0)/HCN (1-0) line ratios are enhanced (CN/HCN = 0.8-1.2) in the star forming regions, suggesting that the regions are photon dominated. The large molecular gas mass (10^8 Msun) within a 0.6 (~60 pc) radius of the CO (3-2) peak and a high dense gas fraction (>20 %) suggested by the HCN (1-0)/CO (3-2) line ratio may signify a future burst of intense star formation there. The shocked gas traced in the CH3OH and HNCO emission indicates sub-kpc scale molecular shocks. We suggest that the molecular shocks may be driven by collisions between inflowing gas and the central massive molecular complex.
It is still poorly constrained how the densest phase of the interstellar medium varies across galactic environment. A large observing time is required to recover significant emission from dense molecular gas at high spatial resolution, and to cover a large dynamic range of extragalactic disc environments. We present new NOrthern Extended Millimeter Array (NOEMA) observations of a range of high critical density molecular tracers (HCN, HNC, HCO+) and CO isotopologues (13CO, C18O) towards the nearby (11.3 Mpc), strongly barred galaxy NGC 3627. These observations represent the current highest angular resolution (1.85; 100 pc) map of dense gas tracers across a disc of a nearby spiral galaxy, which we use here to assess the properties of the dense molecular gas, and their variation as a function of galactocentric radius, molecular gas, and star formation. We find that the HCN(1-0)/CO(2-1) integrated intensity ratio does not correlate with the amount of recent star formation. Instead, the HCN(1-0)/CO(2-1) ratio depends on the galactic environment, with differences between the galaxy centre, bar, and bar end regions. The dense gas in the central 600 pc appears to produce stars less efficiently despite containing a higher fraction of dense molecular gas than the bar ends where the star formation is enhanced. In assessing the dynamics of the dense gas, we find the HCN(1-0) and HCO+(1-0) emission lines showing multiple components towards regions in the bar ends that correspond to previously identified features in CO emission. These features are co-spatial with peaks of Halpha emission, which highlights that the complex dynamics of this bar end region could be linked to local enhancements in the star formation.