Do you want to publish a course? Click here

Pairing, pair-breaking, and their roles in setting the Tc of cuprate high temperature superconductors

121   0   0.0 ( 0 )
 Added by Daniel Dessau
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The key ingredients in any superconductor are the Cooper pairs, in which two electrons combine to form a composite boson. In all conventional superconductors the pairing strength alone sets the majority of the physical properties including the superconducting transition temperature T$_c$. In the cuprate high temperature superconductors, no such link has yet been found between the pairing interactions and T$_c$. Using a new variant of photoelectron spectroscopy we measure both the pair-forming ($Delta$) and a self energy/pair-breaking term ($Gamma_s$) as a function of sample type and sample temperature, and we make the measurements over a wide range of doping and temperatures within and outside of the pseudogap/competing order doping regimes. In all cases we find that T$_c$ is approximately set by a crossover between the pair-forming strength $Delta$ and 3 times the self-energy term $Gamma_s$ - a new paradigm for superconductivity. In addition to departing from conventional superconductivity in which the pairing alone sets T$_c$, these results indicate the zero-order importance of the near-nodal self-energy effects compared to competing order/pseudogap effects.



rate research

Read More

Electron irradiation has been used to introduce point defects in a controlled way in the CuO2 planes of underdoped and optimally doped YBCO. This technique allows us to perform very accurate measurements of Tc and of the residual resistivity in a wide range of defect contents xd down to Tc=0. The Tc decrease does not follow the variation expected from pair breaking theories. The evolutions of Tc and of the transition width with xd emphasize the importance of phase fluctuations, at least for the highly damaged regime. These results open new questions about the evolution of the defect induced Tc depression over the phase diagram of the cuprates
176 - Louis Taillefer 2010
The origin of the exceptionally strong superconductivity of cuprates remains a subject of debate after more than two decades of investigation. Here we follow a new lead: The onset temperature for superconductivity scales with the strength of the anomalous normal-state scattering that makes the resistivity linear in temperature. The same correlation between linear resistivity and Tc is found in organic superconductors, for which pairing is known to come from fluctuations of a nearby antiferromagnetic phase, and in pnictide superconductors, for which an antiferromagnetic scenario is also likely. In the cuprates, the question is whether the pseudogap phase plays the corresponding role, with its fluctuations responsible for pairing and scattering. We review recent studies that shed light on this phase - its boundary, its quantum critical point, and its broken symmetries. The emerging picture is that of a phase with spin-density-wave order and fluctuations, in broad analogy with organic, pnictide, and heavy-fermion superconductors.
We suggest, and demonstrate, a systematic approach to the study of cuprate superconductors, namely, progressive change of ion size in order to systematically alter the interaction strength and other key parameters. R(Ba,Sr)$_2$Cu$_3$O$_y$ (R={La, ... Lu,Y}) is such a system where potentially obscuring structural changes are minimal. We thereby systematically alter both dielectric and magnetic properties. Dielectric fluctuation is characterized by ionic polarizability while magnetic fluctuation is characterized by exchange interactions measurable by Raman scattering. The range of transition temperatures is 70 to 107 K and we find that these correlate only with the dielectric properties, a behavior which persists with external pressure. The ultimate significance may remain to be proven but it highlights the role of dielectric screening in the cuprates and adds support to a previously proposed novel pairing mechanism involving exchange of quantized waves of electronic polarization.
Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.
We have measured the near-normal reflectance of Tl2Ba2CaCu2O8 (Tl2212) for energies from 0.1 to 4.0 eV at room temperature and used a Kramers-Kronig analysis to find the complex, frequency dependent dielectric function, from which the optical conductivity was determined. Using Thermal-Difference-Reflectance (TDR) Spectroscopy the reflectance of the sample in the normal state just above the superconducting transition, and in the superconducting state were then obtained. From these data we determined the ratio of the superconducting- to normal-state optical conductivities. Mattis and Bardeen had calculated this function within the BCS theory, where the gap is a fixed energy-independent quantity. Taking into account the retarded nature of the electron-phonon coupling results in a complex, energy dependent gap causing deviations from the Mattis-Bardeen plot at energies where the phonon coupling function is large. We find a typical deviation near the phonon energies in Tl2212, and in addition, at 1.2 and 1.7eV. The phonon, and these electronic terms can each be described by a coupling constant. None of which by itself gives rise to a high transition temperature, but the combination does. Using Resonant Inelastic X-Ray Scattering (RIXS) we find that the d-to-d excitations of the cuprate ion in Tl2212 fall at the same energies as the dips in the Mattis-Bardeen plot. We conclude that the high superconducting transition temperature of the cuprates is due to the sum of the phonon interaction, and interactions with the Cu-ion d-shell.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا