No Arabic abstract
We investigate mechanisms for language change within a framework where an unconventional signal for a meaning is first innovated, and then subsequently propagated through a speech community to replace the existing convention. We appeal to the notion of universality as it applies to complex interacting systems in the physical sciences and which establishes a link between generic (universal) patterns at the macroscopic scale and relates them to symmetries at the microscopic scale. By relating the presence and absence of specific symmetries to fundamentally distinct mechanisms for language change at the level of individual speakers and speech acts, we are able to draw conclusions about which of these underlying mechanisms are most likely to be responsible for the changes that actually occur. Since these mechanisms are typically believed to be common to all speakers in all speech communities, this provides a means to relate universals in individual behaviour to language universals.
The temporal statistics exhibited by written correspondence appear to be media dependent, with features which have so far proven difficult to characterize. We explain the origin of these difficulties by disentangling the role of spontaneous activity from decision-based prioritizing processes in human dynamics, clocking all waiting times through each agents `proper time measured by activity. This unveils the same fundamental patterns in written communication across all media (letters, email, sms), with response times displaying truncated power-law behavior and average exponents near -3/2. When standard time is used, the response time probabilities are theoretically predicted to exhibit a bi-modal character, which is empirically borne out by our new years-long data on email. These novel perspectives on the temporal dynamics of human correspondence should aid in the analysis of interaction phenomena in general, including resource management, optimal pricing and routing, information sharing, emergency handling.
Dynamic networks exhibit temporal patterns that vary across different time scales, all of which can potentially affect processes that take place on the network. However, most data-driven approaches used to model time-varying networks attempt to capture only a single characteristic time scale in isolation --- typically associated with the short-time memory of a Markov chain or with long-time abrupt changes caused by external or systemic events. Here we propose a unified approach to model both aspects simultaneously, detecting short and long-time behaviors of temporal networks. We do so by developing an arbitrary-order mixed Markov model with change points, and using a nonparametric Bayesian formulation that allows the Markov order and the position of change points to be determined from data without overfitting. In addition, we evaluate the quality of the multiscale model in its capacity to reproduce the spreading of epidemics on the temporal network, and we show that describing multiple time scales simultaneously has a synergistic effect, where statistically significant features are uncovered that otherwise would remain hidden by treating each time scale independently.
Universality or near-universality of citation distributions was found empirically a decade ago but its theoretical justification has been lacking so far. Here, we systematically study citation distributions for different disciplines in order to characterize this putative universality and to understand it theoretically. Using our calibrated model of citation dynamics, we find microscopic explanation of the universality of citation distributions and explain deviations therefrom. We demonstrate that citation count of the paper is determined, on the one hand, by its fitness -- the attribute which, for most papers, is set at the moment of publication. The fitness distributions for different disciplines are very similar and can be approximated by the log-normal distribution. On another hand, citation dynamics of a paper is related to the mechanism by which the knowledge about it spreads in the scientific community. This viral propagation is non-universal and discipline-specific. Thus, universality of citation distributions traces its origin to the fitness distribution, while deviations from universality are associated with the discipline-specific citation dynamics of papers.
Phenomena as diverse as breeding bird populations, the size of U.S. firms, money invested in mutual funds, the GDP of individual countries and the scientific output of universities all show unusual but remarkably similar growth fluctuations. The fluctuations display characteristic features, including double exponential scaling in the body of the distribution and power law scaling of the standard deviation as a function of size. To explain this we propose a remarkably simple additive replication model: At each step each individual is replaced by a new number of individuals drawn from the same replication distribution. If the replication distribution is sufficiently heavy tailed then the growth fluctuations are Levy distributed. We analyze the data from bird populations, firms, and mutual funds and show that our predictions match the data well, in several respects: Our theory results in a much better collapse of the individual distributions onto a single curve and also correctly predicts the scaling of the standard deviation with size. To illustrate how this can emerge from a collective microscopic dynamics we propose a model based on stochastic influence dynamics over a scale-free contact network and show that it produces results similar to those observed. We also extend the model to deal with correlations between individual elements. Our main conclusion is that the universality of growth fluctuations is driven by the additivity of growth processes and the action of the generalized central limit theorem.
Human languages evolve continuously, and a puzzling problem is how to reconcile the apparent robustness of most of the deep linguistic structures we use with the evidence that they undergo possibly slow, yet ceaseless, changes. Is the state in which we observe languages today closer to what would be a dynamical attractor with statistically stationary properties or rather closer to a non-steady state slowly evolving in time? Here we address this question in the framework of the emergence of shared linguistic categories in a population of individuals interacting through language games. The observed emerging asymptotic categorization, which has been previously tested - with success - against experimental data from human languages, corresponds to a metastable state where global shifts are always possible but progressively more unlikely and the response properties depend on the age of the system. This aging mechanism exhibits striking quantitative analogies to what is observed in the statistical mechanics of glassy systems. We argue that this can be a general scenario in language dynamics where shared linguistic conventions would not emerge as attractors, but rather as metastable states.