Do you want to publish a course? Click here

Metal-Insulator Transitions and non-Fermi Liquid Behaviors in 5d Perovskite Iridates

313   0   0.0 ( 0 )
 Added by Abhijit Biswas
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transition metal oxides, in particular, 3d or 4d perovskites have provided diverse emergent physics that originates from the coupling of various degrees of freedom such as spin, lattice, charge, orbital, and also disorder. 5d perovskites form a distinct class because they have strong spin-orbit coupling that introduces to the system an additional energy scale that is comparable to bandwidth and Coulomb correlation. Consequent new physics includes novel Jeff = 1/2 Mott insulators, metal-insulator transitions, spin liquids, and topological insulators. After highlighting some of the phenomena appearing in Ruddlesden-Popper iridate series Srn+1IrnO3n+1, we focus on the transport properties of perovskite SrIrO3. Using epitaxial thin films on various substrates, we demonstrate that metal-insulator transitions can be induced in perovskite SrIrO3 by reducing its thickness or by imposing compressive strain. The metal-insulator transition driven by thickness reduction is due to disorder, but the metal-insulator transition driven by compressive strain is accompanied by peculiar non-Fermi liquid behaviors, possibly due to the delicate interplay between correlation, disorder, and spin-orbit coupling. We examine various theoretical frameworks to understand the non-Fermi liquid physics and metal-insulator transition that occurs in SrIrO3 and offer the Mott-Anderson-Griffiths scenario as a possible solution.



rate research

Read More

Electronic transport has been investigated for strong spin-orbit coupled perovskite SrIrO3 thin films grown at various substrate temperatures. The electronic transport of the SrIrO3 films is found to be very sensitive to the growth parameters; in particular, the film can either be a metal or an insulator depending upon the substrate growth temperature. While all the metallic films show unusual sublinear temperature dependent non-Fermi liquid behaviors in resistivity, the insulating film grown at a higher temperature stands out for its inhomogeneous Ir distribution, as analyzed by secondary ion mass spectrometry. This observation demonstrates that the inhomogeneous distribution of cations can be one of the fundamental factors in affecting the electronic transport in heavy element based oxide films and heterostructures.
We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr1-xLax)3Ir2O7. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected Fermi arcs, reminiscent of those reported recently in surface electron-doped Sr2IrO4. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.
145 - SangEun Han , Yong Baek Kim 2021
Understanding non-Landau Fermi liquids in dimensions higher than one, has been a subject of great interest. Such phases may serve as parent states for other unconventional phases of quantum matter, in a similar manner that conventional broken symmetry states can be understood as instabilities of the Landau Fermi liquid. In this work, we investigate the emergence of a novel non-Landau Fermi liquid in two dimensions, where the fermions with quadratic band-touching dispersion interact with a Bose metal. The bosonic excitations in the Bose metal possess an extended nodal-line spectrum in momentum space, which arises due to the subsystem symmetry or the restricted motion of bosons. Using renormalization group analysis and direct computations, we show that the extended infrared (IR) singularity of the Bose metal leads to a line of interacting fixed points of novel non-Landau Fermi liquids, where the anomalous dimension of the fermions varies continuously, akin to the Luttinger liquid in one dimension. Further, the multi-patch generalization of the model is used to explore other unusual features of the resulting ground state.
We study the quantum critical phenomena emerging at the transition from triple-Weyl semimetal to band insulator, which is a topological phase transition described by the change of topological invariant. The critical point realizes a new type of semimetal state in which the fermion dispersion is cubic along two directions and quadratic along the third. Our renormalization group analysis reveals that, the Coulomb interaction is marginal at low energies and even arbitrarily weak Coulomb interaction suffices to induce an infrared fixed point. We compute a number of observable quantities, and show that they all exhibit non-Fermi liquid behaviors at the fixed point. When the interplay between the Coulomb and short-range four-fermion interactions is considered, the system becomes unstable below a finite energy scale. The system undergoes a first-order topological transition when the fermion flavor $N$ is small, and enters into a nematic phase if $N$ is large enough. Non-Fermi liquid behaviors are hidden by the instability at low temperatures, but can still be observed at higher temperatures. Experimental detection of the predicted phenomena is discussed.
This article reviews recent results of magnetotransport and magnetization measurements performed on highly oriented pyrolitic graphite (HOPG) and single crystalline Kish graphite samples. Both metal-insulator and insulator-metal transitions driven by magnetic field applied perpendicular to the basal planes of graphite were found and discussed in the light of relevant theories. The results provide evidence for the existence of localized superconducting domains in HOPG even at room temperature, as well as an interplay between superconducting and ferromagnetic correlations. We also present experimental evidence for the superconductivity occurrence in graphite-sulfur composites.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا