Do you want to publish a course? Click here

Heat conduction tuning using the wave nature of phonons

127   0   0.0 ( 0 )
 Added by Jeremie Maire
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The world communicates to our senses of vision, hearing and touch in the language of waves, as the light, sound, and even heat essentially consist of microscopic vibrations of different media. The wave nature of light and sound has been extensively investigated over the past century and is now widely used in modern technology. But the wave nature of heat has been the subject of mostly theoretical studies, as its experimental demonstration, let alone practical use, remains challenging due to the extremely short wavelengths of these waves. Here we show a possibility to use the wave nature of heat for thermal conductivity tuning via spatial short-range order in phononic crystal nanostructures. Our experimental and theoretical results suggest that interference of thermal phonons occurs in strictly periodic nanostructures and slows the propagation of heat. This finding broadens the methodology of heat transfer engineering by expanding its territory to the wave nature of heat.



rate research

Read More

Understanding microscopic heat conduction in thin films is important for nano/micro heat transfer and thermal management for advanced electronics. As the thickness of thin films is comparable to or shorter than a phonon wavelength, phonon dispersion relations and transport properties are significantly modulated, which should be taken into account for heat conduction in thin films. Although phonon confinement and depletion effects have been considered, it should be emphasized that surface-localized phonons (surface phonons) arise whose influence on heat conduction may not be negligible due to the high surface-to-volume ratio. However, the role of surface phonons in heat conduction has received little attention thus far. In the present work, we performed anharmonic lattice dynamics calculations to investigate the thickness and temperature dependence of in-plane thermal conductivity of silicon thin films with sub-10-nm thickness in terms of surface phonons. Through systematic analysis of the influences of surface phonons, we found that anharmonic coupling between surface and internal phonons localized in thin films significantly suppresses overall in-plane heat conduction in thin films. We also discovered that specific low-frequency surface phonons significantly contribute to surface--internal phonon scattering and heat conduction suppression. Our findings are beneficial for the thermal management of electronics and phononic devices and may lead to surface phonon engineering for thermal conductivity control.
84 - Nianbei Li , Peiqing Tong , 2006
We study heat conduction in one dimensional (1D) anharmonic lattices analytically and numerically by using an effective phonon theory. It is found that every effective phonon mode oscillates quasi-periodically. By weighting the power spectrum of the total heat flux in the Debye formula, we obtain a unified formalism that can explain anomalous heat conduction in momentum conserved lattices without on-site potential and normal heat conduction in lattices with on-site potential. Our results agree very well with numerical ones for existing models such as the Fermi-Pasta-Ulam model, the Frenkel-Kontorova model and the $phi^4$ model etc.
The emerging quantum technological apparatuses [1,2], such as the quantum computer [3-5], call for extreme performance in thermal engineering at the nanoscale [6]. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance [7,8]. The physics of this kind of quantum-limited heat conduction has been experimentally studied for lattice vibrations, or phonons [9], for electromagnetic interactions [10], and for electrons [11]. However, the short distance between the heat-exchanging bodies in the previous experiments hinders the applicability of these systems in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this striking improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus it seems that quantum-limited heat conduction has no fundamental restriction in its distance. This work lays the foundation for the integration of normal-metal components into superconducting transmission lines, and hence provides an important tool for circuit quantum electrodynamics [12-14], which is the basis of the emerging superconducting quantum computer [15]. In particular, our results demonstrate that cooling of nanoelectronic devices can be carried out remotely with the help of a far-away engineered heat sink. In addition, quantum-limited heat conduction plays an important role in the contemporary studies of thermodynamics such as fluctuation relations and Maxwells demon [16,17]. Here, the long distance provided by our results may, for example, lead to an ultimate efficiency of mesoscopic heat engines with promising practical applications [18].
74 - S. Makino , T. Fukui , T. Yoshida 2021
We propose a one-dimensional (1D) diffusion equation (heat equation) for systems in which the diffusion constant (thermal diffusivity) varies alternately with a spatial period $a$. We solve the time evolution of the field (temperature) profile from a given initial distribution, by diagonalising the Hamiltonian, i.e., the Laplacian with alternating diffusion constants, and expanding the temperature profile by its eigenstates. We show that there are basically phases with or without edge states. The edge states affect the heat conduction around heat baths. In particular, rapid heat transfer to heat baths would be observed in a short time regime, which is estimated to be $t<10^{-2}$s for $asim 10^{-3}$m system and $t< 1$s for $asim 10^{-2}$m system composed of two kinds of familiar metals such as titanium, zirconium and aluminium, gold, etc. We also discuss the effective lattice model which simplifies the calculation of edge states up to high energy. It is suggested that these high energy edge states also contribute to very rapid heat conduction in a very short time regime.
We analyze the heat current flowing across interacting quantum dots within the Coulomb blockade regime. Power can be generated by either voltage or temperature biases. In the former case, we find nonlinear contributions to the Peltier effect that are dominated by conventional Joule heating for sufficiently high voltages. In the latter case, the differential thermal conductance shows maxima or minima depending on the energy level position. Furthermore, we discuss departures from the Kelvin-Onsager reciprocity relation beyond linear response.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا