Do you want to publish a course? Click here

The Brightest Young Star Clusters in NGC 5253

151   0   0.0 ( 0 )
 Added by Daniela Calzetti
 Publication date 2015
  fields Physics
and research's language is English
 Authors D. Calzetti




Ask ChatGPT about the research

The nearby dwarf starburst galaxy NGC5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the `radio nebula). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC5253 with wavelength coverage from 1500 Ang to 1.9 micron in 13 filters. These include H-alpha, P-beta, and P-alpha, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the 9 optically brightest clusters (M_V < -8.8) and the two young radio nebula clusters. The clusters have ages ~1-15 Myr and masses ~1x10^4 - 2.5x10^5 M_sun. The clusters spatial location and ages indicate that star formation has become more concentrated towards the radio nebula over the last ~15 Myr. The most massive cluster is in the radio nebula; with a mass 2.5x10^5 M_sun and an age ~1 Myr, it is 2-4 times less massive and younger than previously estimated. It is within a dust cloud with A_V~50 mag, and shows a clear nearIR excess, likely from hot dust. The second radio nebula cluster is also ~1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.



rate research

Read More

71 - C. A. Tremonti 2001
We investigate the star formation history of both the bright star clusters and the diffuse `field star population in the dwarf starburst galaxy NGC 5253 using STIS longslit ultraviolet spectroscopy. Our slit covers a physical area of 370 x 1.6 pc and includes 8 apparent clusters and several inter-cluster regions of diffuse light which we take to be the field. The diffuse light spectrum lacks the strong O-star wind features which are clearly visible in spectra of the brightest clusters. This discrepancy provides compelling evidence that the diffuse light is not reflected light from nearby clusters, but originates in a UV-bright field star population, and it raises the issue of whether the star formation process may be operating differently in the field than in clusters. We compare our spectra to STARBURST99 evolutionary synthesis models which incorporate a new low metallicity atlas of O-star spectra. We favor a scenario which accounts for the paucity of O-stars in the field without requiring the field to have a different IMF than the clusters: stellar clusters form continuously and then dissolve on ~10 Myr timescales and disperse their remaining stars into the field. We consider the probable contribution of an O-star deficient field population to the spatially unresolved spectra of high redshift galaxies. (Abridged)
We discuss a theoretical model for the early evolution of massive star clusters and confront it with the ALMA, radio and infrared observations of the young stellar cluster highly obscured by the molecular cloud D1 in the nearby dwarf spheroidal galaxy NGC 5253. We show that a large turbulent pressure in the central zones of D1 cluster may cause individual wind-blown bubbles to reach pressure confinement before encountering their neighbors. In this case stellar winds are added to the hot shocked wind pockets of gas around individual massive stars that leads them to meet and produce a cluster wind in time-scales less than $10^5$ yrs. In order to inhibit the possibility of cloud dispersal, or the early negative star formation feedback, one should account for mass loading that may come, for example, from pre-main sequence (PMS) low-mass stars through photo-evaporation of their proto-stellar disks. Mass loading at a rate in excess of 8$times 10^{-9}$ M$_{odot}$ yr$^{-1}$ per each PMS star is required to extend the hidden star cluster phase in this particular cluster. In this regime, the parental cloud remains relatively unperturbed, while pockets of molecular, photoionized and hot gas coexist within the star forming region. Nevertheless, the most likely scenario for cloud D1 and its embedded cluster is that the hot shocked winds around individual massive stars should merge at an age of a few millions of years when the PMS star proto-stellar disks vanish and mass loading ceases that allows a cluster to form a global wind.
A local dwarf galaxy, NGC 5253, has a young super star cluster that may provide an example of highly efficient star formation. Here we report the detection and imaging, with the Submillimeter Array, of the J= 3-2 rotational transition of CO at the location of the massive cluster associated with the supernebula. The gas cloud is hot, dense, quiescent, and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by Wolf-Rayet stars within the embedded star cluster. Its star formation efficiency exceeds 50%, ten times higher than clouds in the Milky Way: this cloud is a factory of stars and soot. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.
The conventional picture of coeval, chemically homogeneous, populous star clusters -- known as `simple stellar populations (SSPs) -- is a view of the past. Photometric and spectroscopic studies reveal that almost all ancient globular clusters in the Milky Way and our neighbouring galaxies exhibit star-to-star light-element abundance variations, typically known as multiple populations (MPs). Here, we analyse photometric $it Hubble$ $it Space$ $it Telescope$ observations of three young ($<$2 Gyr-old) Large and Small Magellanic Cloud clusters, NGC 411, NGC 1718 and NGC 2213. We measure the widths of their red-giant branches (RGBs). For NGC 411, we also use a pseudo-colour--magnitude diagram (pseudo-CMD) to assess its RGB for evidence of MPs. We compare the morphologies of the clusters RGBs with artificially generated SSPs. We conclude that their RGBs do not show evidence of significant broadening beyond intrinsic photometric scatter, suggesting an absence of significant chemical abundance variations in our sample clusters. Specifically, for NGC 411, NGC 1718 and NGC 2213 we derive maximum helium-abundance variations of delta_Y=0.003$pm$0.001 Y=0.300), 0.002$pm$0.001 (Y=0.350) and 0.004$pm$0.002 (Y=0.300), respectively. We determined an upper limit to the NGC 411 nitrogen-abundance variation of $Delta$[N/Fe] = 0.3 dex; the available data for our other clusters do not allow us to determine useful upper limits. It thus appears that the transition from SSPs to MPs occurs at an age of ~2 Gyr, implying that age might play an important role in this transition. This raises the question as to whether this is indeed a fundamental minimum-age limit for the formation of MPs.
95 - David S. Meier 2002
We report the detection of CO(2-1) and 3.1 mm and 1.3 mm continuum emission towards the extremely young starburst in NGC 5253, with data taken from the Owens Valley Millimeter Array. Faint CO emission originates in five molecular clouds distributed along the prominent dust lane seen in visual images. With the gas, the morphology of NGC 5253 looks much like a dwarf elliptical version of the ``dust-lane ellipticals or ``polar-ring class of galaxies. The molecular gas resides in GMCs well away from the radio-IR super-star cluster/supernebula seen in the radio and infrared. The millimeter continuum data confirm that the 2 cm flux from the supernebula is optically thick; the Lyman continuum rate derived from the 1.3 mm continuum is N$_{Lyc} sim 6x10^{52} s^{-1}$ for the central ~20. CO may underestimate the true molecular column density, as expected for a low metallicity system, although there are regions along the dust lane that appear to have near-Galactic conversion factors. We estimate a total molecular gas mass of $M_{H_{2}}lsim 10^{7} M_{odot}$. The molecular gas in the dust lane is falling into the galaxy, supporting an accretion hypothesis. The dust lane gas cannot therefore be causally associated with the current burst of star formation. A relatively small amount, $M_{H_{2}}lsim 5x10^{5} M_{odot}$, of molecular gas is associated with the current starburst. We estimate a star formation efficiency of at least 25 % and more likely ~75 %, consistent with the formation of a bound cluster. Despite the extreme youth of the starburst, the specific trigger of the starburst remains elusive, although the infall of gas in the dust lane suggests that there is more star formation to come in NGC 5253.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا