Do you want to publish a course? Click here

Style in the Age of Instagram: Predicting Success within the Fashion Industry using Social Media

161   0   0.0 ( 0 )
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Fashion is a multi-billion dollar industry with social and economic implications worldwide. To gain popularity, brands want to be represented by the top popular models. As new faces are selected using stringent (and often criticized) aesthetic criteria, emph{a priori} predictions are made difficult by information cascades and other fundamental trend-setting mechanisms. However, the increasing usage of social media within and without the industry may be affecting this traditional system. We therefore seek to understand the ingredients of success of fashion models in the age of Instagram. Combining data from a comprehensive online fashion database and the popular mobile image-sharing platform, we apply a machine learning framework to predict the tenure of a cohort of new faces for the 2015 Spring,/,Summer season throughout the subsequent 2015-16 Fall,/,Winter season. Our framework successfully predicts most of the new popular models who appeared in 2015. In particular, we find that a strong social media presence may be more important than being under contract with a top agency, or than the aesthetic standards sought after by the industry.



rate research

Read More

The non-pharmaceutical interventions (NPIs), aimed at reducing the diffusion of the COVID-19 pandemic, has dramatically influenced our behaviour in everyday life. In this work, we study how individuals adapted their daily movements and person-to-person contact patterns over time in response to the COVID-19 pandemic and the NPIs. We leverage longitudinal GPS mobility data of hundreds of thousands of anonymous individuals in four US states and empirically show the dramatic disruption in peoples life. We find that local interventions did not just impact the number of visits to different venues but also how people experience them. Individuals spend less time in venues, preferring simpler and more predictable routines and reducing person-to-person contact activities. Moreover, we show that the stringency of interventions alone does explain the number and duration of visits to venues: individual patterns of visits seem to be influenced by the local severity of the pandemic and a risk adaptation factor, which increases the peoples mobility regardless of the stringency of interventions.
While social media make it easy to connect with and access information from anyone, they also facilitate basic influence and unfriending mechanisms that may lead to segregated and polarized clusters known as echo chambers. Here we study the conditions in which such echo chambers emerge by introducing a simple model of information sharing in online social networks with the two ingredients of influence and unfriending. Users can change both their opinions and social connections based on the information to which they are exposed through sharing. The model dynamics show that even with minimal amounts of influence and unfriending, the social network rapidly devolves into segregated, homogeneous communities. These predictions are consistent with empirical data from Twitter. Although our findings suggest that echo chambers are somewhat inevitable given the mechanisms at play in online social media, they also provide insights into possible mitigation strategies.
Psychological, political, cultural, and even societal factors are entangled in the reasoning and decision-making process towards vaccination, rendering vaccine hesitancy a complex issue. Here, administering a series of surveys via a Facebook-hosted application, we study the worldviews of people that Liked supportive or vaccine resilient Facebook Pages. In particular, we assess differences in political viewpoints, moral values, personality traits, and general interests, finding that those sceptical about vaccination, appear to trust less the government, are less agreeable, while they are emphasising more on anti-authoritarian values. Exploring the differences in moral narratives as expressed in the linguistic descriptions of the Facebook Pages, we see that pages that defend vaccines prioritise the value of the family while the vaccine hesitancy pages are focusing on the value of freedom. Finally, creating embeddings based on the health-related likes on Facebook Pages, we explore common, latent interests of vaccine-hesitant people, showing a strong preference for natural cures. This exploratory analysis aims at exploring the potentials of a social media platform to act as a sensing tool, providing researchers and policymakers with insights drawn from the digital traces, that can help design communication campaigns that build confidence, based on the values that also appeal to the socio-moral criteria of people.
Social media provides many opportunities to monitor and evaluate political phenomena such as referendums and elections. In this study, we propose a set of approaches to analyze long-running political events on social media with a real-world experiment: the debate about Brexit, i.e., the process through which the United Kingdom activated the option of leaving the European Union. We address the following research questions: Could Twitter-based stance classification be used to demonstrate public stance with respect to political events? What is the most efficient and comprehensive approach to measuring the impact of politicians on social media? Which of the polarized sides of the debate is more responsive to politician messages and the main issues of the Brexit process? What is the share of bot accounts in the Brexit discussion and which side are they for? By combining the user stance classification, topic discovery, sentiment analysis, and bot detection, we show that it is possible to obtain useful insights about political phenomena from social media data. We are able to detect relevant topics in the discussions, such as the demand for a new referendum, and to understand the position of social media users with respect to the different topics in the debate. Our comparative and temporal analysis of political accounts can detect the critical periods of the Brexit process and the impact they have on the debate.
Social media (SM) have become an integral part of our lives, expanding our inter-linking capabilities to new levels. There is plenty to be said about their positive effects. On the other hand however, some serious negative implications of SM have repeatedly been highlighted in recent years, pointing at various SM threats for society, and its teenagers in particular: from common issues (e.g. digital addiction and polarization) and manipulative influences of algorithms to teenager-specific issues (e.g. body stereotyping). The full impact of current SM platform design -- both at an individual and societal level -- asks for a comprehensive evaluation and conceptual improvement. We extend measures of Collective Well-Being (CWB) to SM communities. As users relationships and interactions are a central component of CWB, education is crucial to improve CWB. We thus propose a framework based on an adaptive social media virtual companion for educating and supporting the entire students community to interact with SM. The virtual companion will be powered by a Recommender System (CWB-RS) that will optimize a CWB metric instead of engagement or platform profit, which currently largely drives recommender systems thereby disregarding any societal collateral effect. CWB-RS will optimize CWB both in the short term, by balancing the level of SM threat the students are exposed to, as well as in the long term, by adopting an Intelligent Tutor System role and enabling adaptive and personalized sequencing of playful learning activities. This framework offers an initial step on understanding how to design SM systems and embedded educational interventions that favor a more healthy and positive society.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا