Tunable excitonic insulator in quantum limit graphite


Abstract in English

Half a century ago, Mott noted that tuning the carrier density of a semimetal towards zero produces an insulating state in which electrons and holes form bound pairs. It was later argued that such pairing persists even if a semiconducting gap opens in the underlying band structure, giving rise to what has become known as the strong coupling limit of an `excitonic insulator. While these `weak and `strong coupling extremes were subsequently proposed to be manifestations of the same excitonic state of electronic matter, the predicted continuity of such a phase across a band gap opening has not been realized experimentally in any material. Here we show the quantum limit of graphite, by way of temperature and angle-resolved magnetoresistance measurements, to host such an excitonic insulator phase that evolves continuously between the weak and strong coupling limits. We find that the maximum transition temperature T_EI of the excitonic phase is coincident with a band gap opening in the underlying electronic structure at B_0= 46 +/- 1 T, which is evidenced above T_EI by a thermally broadened inflection point in the magnetoresistance. The overall asymmetry of the observed phase boundary around B_0 closely matches theoretical predictions of a magnetic field-tuned excitonic insulator phase in which the opening of a band gap marks a crossover from predominantly momentum-space pairing to real-space pairing.

Download