Do you want to publish a course? Click here

Maximum entropy principle for stationary states underpinned by stochastic thermodynamics

355   0   0.0 ( 0 )
 Added by Ian Ford
 Publication date 2015
  fields Physics
and research's language is English
 Authors Ian J. Ford




Ask ChatGPT about the research

The selection of an equilibrium state by maximising the entropy of a system, subject to certain constraints, is often powerfully motivated as an exercise in logical inference, a procedure where conclusions are reached on the basis of incomplete information. But such a framework can be more compelling if it is underpinned by dynamical arguments, and we show how this can be provided by stochastic thermodynamics, where an explicit link is made between the production of entropy and the stochastic dynamics of a system coupled to an environment. The separation of entropy production into three components allows us to select a stationary state by maximising the change, averaged over all realisations of the motion, in the principal relaxational or nonadiabatic component, equivalent to requiring that this contribution to the entropy production should become time independent for all realisations. We show that this recovers the usual equilibrium probability density function (pdf) for a conservative system in an isothermal environment, as well as the stationary nonequilibrium pdf for a particle confined to a potential under nonisothermal conditions, and a particle subject to a constant nonconservative force under isothermal conditions. The two remaining components of entropy production account for a recently discussed thermodynamic anomaly between over- and underdamped treatments of the dynamics in the nonisothermal stationary state.



rate research

Read More

We study the nonextensive thermodynamics for open systems. On the basis of the maximum entropy principle, the dual power-law q-distribution functions are re-deduced by using the dual particle number definitions and assuming that the chemical potential is constant in the two sets of parallel formalisms, where the fundamental thermodynamic equations with dual interpretations of thermodynamic quantities are derived for the open systems. By introducing parallel structures of Legendre transformations, other thermodynamic equations with dual interpretations of quantities are also deduced in the open systems, and then several dual thermodynamic relations are inferred. One can easily find that there are correlations between the dual relations, from which an equivalent rule is found that the Tsallis factor is invariable in calculations of partial derivative with constant volume or constant entropy. Using this rule, more correlations can be found. And the statistical expressions of the Lagrange internal energy and pressure are easily obtained.
Systems with long-range interactions display a short-time relaxation towards Quasi Stationary States (QSS) whose lifetime increases with the system size. In the paradigmatic Hamiltonian Mean-field Model (HMF) out-of-equilibrium phase transitions are predicted and numerically detected which separate homogeneous (zero magnetization) and inhomogeneous (nonzero magnetization) QSS. In the former regime, the velocity distribution presents (at least) two large, symmetric, bumps, which cannot be self-consistently explained by resorting to the conventional Lynden-Bell maximum entropy approach. We propose a generalized maximum entropy scheme which accounts for the pseudo-conservation of additional charges, the even momenta of the single particle distribution. These latter are set to the asymptotic values, as estimated by direct integration of the underlying Vlasov equation, which formally holds in the thermodynamic limit. Methodologically, we operate in the framework of a generalized Gibbs ensemble, as sometimes defined in statistical quantum mechanics, which contains an infinite number of conserved charges. The agreement between theory and simulations is satisfying, both above and below the out of equilibrium transition threshold. A precedently unaccessible feature of the QSS, the multiple bumps in the velocity profile, is resolved by our new approach.
Maximum entropy (maxEnt) inference of state probabilities using state-dependent constraints is popular in the study of complex systems. In stochastic dynamical systems, the effect of state space topology and path-dependent constraints on the inferred state probabilities is unknown. To that end, we derive the transition probabilities and the stationary distribution of a maximum {it path} entropy Markov process subject to state- and path-dependent constraints. The stationary distribution reflects a competition between path multiplicity and imposed constraints and is significantly different from the Boltzmann distribution. We illustrate our results with a particle diffusing on an energy landscape. Connections with the path integral approach to diffusion are discussed.
We apply the Principle of Maximum Entropy to the study of a general class of deterministic fractal sets. The scaling laws peculiar to these objects are accounted for by means of a constraint concerning the average content of information in those patterns. This constraint allows for a new statistical characterization of fractal objects and fractal dimension.
We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical reaction systems based on a master equation defined on the space of microscopic chemical states, and on appropriate definitions of entropy and entropy production, The system is in contact with a heat reservoir, and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlogl reaction models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا