We solve the nonlinear Dirichlet problem (uniquely) for functions with prescribed asymptotic singularities at a finite number of points, and with arbitrary continuous boundary data, on a domain in euclidean space. The main results apply, in particular, to subequations with a Riesz characteristic $p geq 2$. In this case it is shown that, without requiring uniform ellipticity, the Dirichlet problem can be solved uniquely for arbitrary continuous boundary data with singularities asymptotic to the Riesz kernel: $Theta_j K_p(x - x_j)$, where $K_p(x) = - {1over|x|^{p-2}}$ for $p>2$ and $K_2(x) = log |x|$, at any prescribed finite set of points $x_1,...,x_k$ in the domain and any finite set of positive real numbers $Theta_1,..., Theta_k$. This sharpens a previous result of the authors concerning the discreteness of high-density sets of subsolutions. Uniqueness and existence results are also established for finite-type singularities such as $Theta_j |x - x_j|^{2-p}$ for $1leq p<2$. The main results apply similarly with prescribed singularities asymptotic to the fundamental solutions of Armstrong-Sirakov-Smart (in the uniformly elliptic case).