We present a general strategy to derive entanglement criteria which consists in performing a mapping from qudits to qubits that preserves the separability of the parties and SU(2) rotational invariance. Consequently, it is possible to apply the well known positive partial transpose criterion to reveal the existence of quantum correlations between qudits. We discuss some examples of entangled states that are detected using the proposed strategy. Finally, we demonstrate, using our scheme, how some variance-based entanglement witnesses can be generalized from qubits to higher dimensional spin systems.