Do you want to publish a course? Click here

Recoverable DTN Routing based on a Relay of Cyclic Message-Ferries on a MSQ Network

173   0   0.0 ( 0 )
 Added by Yukio Hayashi
 Publication date 2015
and research's language is English
 Authors Yukio Hayashi




Ask ChatGPT about the research

An interrelation between a topological design of network and efficient algorithm on it is important for its applications to communication or transportation systems. In this paper, we propose a design principle for a reliable routing in a store-carry-forward manner based on autonomously moving message-ferries on a special structure of fractal-like network, which consists of a self-similar tiling of equilateral triangles. As a collective adaptive mechanism, the routing is realized by a relay of cyclic message-ferries corresponded to a concatenation of the triangle cycles and using some good properties of the network structure. It is recoverable for local accidents in the hierarchical network structure. Moreover, the design principle is theoretically supported with a calculation method for the optimal service rates of message-ferries derived from a tandem queue model for stochastic processes on a chain of edges in the network. These results obtained from a combination of complex network science and computer science will be useful for developing a resilient network system.



rate research

Read More

System noise can negatively impact the performance of HPC systems, and the interconnection network is one of the main factors contributing to this problem. To mitigate this effect, adaptive routing sends packets on non-minimal paths if they are less congested. However, while this may mitigate interference caused by congestion, it also generates more traffic since packets traverse additional hops, causing in turn congestion on other applications and on the application itself. In this paper, we first describe how to estimate network noise. By following these guidelines, we show how noise can be reduced by using routing algorithms which select minimal paths with a higher probability. We exploit this knowledge to design an algorithm which changes the probability of selecting minimal paths according to the application characteristics. We validate our solution on microbenchmarks and real-world applications on two systems relying on a Dragonfly interconnection network, showing noise reduction and performance improvement.
As one of the most popular south-bound protocol of software-defined networking(SDN), OpenFlow decouples the network control from forwarding devices. It offers flexible and scalable functionality for networks. These advantages may cause performance issues since there are performance penalties in terms of packet processing speed. It is important to understand the performance of OpenFlow switches and controllers for its deployments. In this paper we model the packet processing time of OpenFlow switches and controllers. We mainly analyze how the probability of packet-in messages impacts the performance of switches and controllers. Our results show that there is a performance penalty in OpenFlow networks. However, the penalty is not much when probability of packet-in messages is low. This model can be used for a network designer to approximate the performance of her deployments.
Network Traffic Monitoring and Analysis (NTMA) represents a key component for network management, especially to guarantee the correct operation of large-scale networks such as the Internet. As the complexity of Internet services and the volume of traffic continue to increase, it becomes difficult to design scalable NTMA applications. Applications such as traffic classification and policing require real-time and scalable approaches. Anomaly detection and security mechanisms require to quickly identify and react to unpredictable events while processing millions of heterogeneous events. At last, the system has to collect, store, and process massive sets of historical data for post-mortem analysis. Those are precisely the challenges faced by general big data approaches: Volume, Velocity, Variety, and Veracity. This survey brings together NTMA and big data. We catalog previous work on NTMA that adopt big data approaches to understand to what extent the potential of big data is being explored in NTMA. This survey mainly focuses on approaches and technologies to manage the big NTMA data, additionally briefly discussing big data analytics (e.g., machine learning) for the sake of NTMA. Finally, we provide guidelines for future work, discussing lessons learned, and research directions.
Ubiquitous sensing devices frequently disseminate their data between them. The use of a distributed event-based system that decouples publishers of subscribers arises as an ideal candidate to implement the dissemination process. In this paper, we present a network architecture which merges the network and overlay layers of typical structured event-based systems. Directional Random Walks (DRWs) are used for the construction of this merged layer. Our first results show that DRWs are suitable to balance the load using a few nodes in the network to construct the dissemination path. As future work, we propose to study the properties of this new layer and to work on the design of Bloom filters to manage broker nodes.
149 - Ricky X. F. Chen 2021
Suppose there is a message generated at a node $v$ in a network and $v$ decides to pass the message to one of the neighbors $u$, and $u$ next decides to pass the message to one of its own neighbors, and so on. How to relay the message as far as possible with local decisions? To the best of our knowledge no general solution other than randomly picking available adjacent node exists. Here we report some progress. Our first contribution is a new framework called tp-separate chain decomposition for studying network structures. Each tp-separate chain induces a ranking of nodes. We then prove that the ranks can be locally and distributively computed via searching some stable states of certain dynamical systems on the network and can be used to search long paths of a guaranteed length containing any given node. Numerical analyses on a number of typical real-world networks demonstrate the effectiveness of the approach.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا