Do you want to publish a course? Click here

Bootstrapping 3D Fermions

152   0   0.0 ( 0 )
 Added by David Poland
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the conformal bootstrap for a 4-point function of fermions $langlepsipsipsipsirangle$ in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the $psi times psi$ OPE, and also on the central charge $C_T$. We observe features in our bounds that coincide with scaling dimensions in the Gross-Neveu models at large $N$. We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.



rate research

Read More

We study the conformal bootstrap constraints for 3D conformal field theories with a $mathbb{Z}_2$ or parity symmetry, assuming a single relevant scalar operator $epsilon$ that is invariant under the symmetry. When there is additionally a single relevant odd scalar $sigma$, we map out the allowed space of dimensions and three-point couplings of such Ising-like CFTs. If we allow a second relevant odd scalar $sigma$, we identify a feature in the allowed space compatible with 3D $mathcal{N}=1$ superconformal symmetry and conjecture that it corresponds to the minimal $mathcal{N}=1$ supersymmetric extension of the Ising CFT. This model has appeared in previous numerical bootstrap studies, as well as in proposals for emergent supersymmetry on the boundaries of topological phases of matter. Adding further constraints from 3D $mathcal{N}=1$ superconformal symmetry, we isolate this theory and use the numerical bootstrap to compute the leading scaling dimensions $Delta_{sigma} = Delta_{epsilon} - 1 = .58444(22)$ and three-point couplings $lambda_{sigmasigmaepsilon} = 1.0721(2)$ and $lambda_{epsilonepsilonepsilon} = 1.67(1)$. We additionally place bounds on the central charge and use the extremal functional method to estimate the dimensions of the next several operators in the spectrum. Based on our results we observe the possible exact relation $lambda_{epsilonepsilonepsilon}/lambda_{sigmasigmaepsilon} = tan(1)$.
We estimate thermal one-point functions in the 3d Ising CFT using the operator product expansion (OPE) and the Kubo-Martin-Schwinger (KMS) condition. Several operator dimensions and OPE coefficients of the theory are known from the numerical bootstrap for flat-space four-point functions. Taking this data as input, we use a thermal Lorentzian inversion formula to compute thermal one-point coefficients of the first few Regge trajectories in terms of a small number of unknown parameters. We approximately determine the unknown parameters by imposing the KMS condition on the two-point functions $langle sigmasigma rangle$ and $langle epsilonepsilon rangle$. As a result, we estimate the one-point functions of the lowest-dimension $mathbb Z_2$-even scalar $epsilon$ and the stress-energy tensor $T_{mu u}$. Our result for $langle sigmasigma rangle$ at finite-temperature agrees with Monte-Carlo simulations within a few percent, inside the radius of convergence of the OPE.
In this work we study the $6j$ symbol of the $3d$ conformal group for fermionic operators. In particular, we study 4-point functions containing two fermions and two scalars and also those with four fermions. By using weight-shifting operators and harmonic analysis for the Euclidean conformal group, we relate these spinning $6j$ symbols to the simpler $6j$ symbol for four scalar operators. As one application we use these techniques to compute $3d$ mean field theory (MFT) OPE coefficients for fermionic operators. We then compute corrections to the MFT spectrum and couplings due to the inversion of a single operator, such as the stress tensor or a low-dimension scalar. These results are valid at finite spin and extend the perturbative large spin analysis to include non-perturbative effects in spin.
We use numerical bootstrap techniques to study correlation functions of a traceless symmetric tensors of $O(N)$ with two indexes $t_{ij}$. We obtain upper bounds on operator dimensions for all the relevant representations and several values of $N$. We discover several families of kinks, which do not correspond to any known model and we discuss possible candidates. We then specialize to the case $N=4$, which has been conjectured to describe a phase transition in the antiferromagnetic real projective model $ARP^{3}$. Lattice simulations provide strong evidence for the existence of a second order phase transition, while an effective field theory approach does not predict any fixed point. We identify a set of assumptions that constrain operator dimensions to a closed region overlapping with the lattice prediction. The region is still present after pushing the numerics in the single correlator case or when considering a mixed system involving $t$ and the lowest dimension scalar singlet.
We study the critical $O(3)$ model using the numerical conformal bootstrap. In particular, we use a recently developed cutting-surface algorithm to efficiently map out the allowed space of CFT data from correlators involving the leading $O(3)$ singlet $s$, vector $phi$, and rank-2 symmetric tensor $t$. We determine their scaling dimensions to be $(Delta_{s}, Delta_{phi}, Delta_{t}) = (0.518942(51), 1.59489(59), 1.20954(23))$, and also bound various OPE coefficients. We additionally introduce a new ``tip-finding algorithm to compute an upper bound on the leading rank-4 symmetric tensor $t_4$, which we find to be relevant with $Delta_{t_4} < 2.99056$. The conformal bootstrap thus provides a numerical proof that systems described by the critical $O(3)$ model, such as classical Heisenberg ferromagnets at the Curie transition, are unstable to cubic anisotropy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا