Exponential bounds for the hypergeometric distribution


Abstract in English

We establish exponential bounds for the hypergeometric distribution which include a finite sampling correction factor, but are otherwise analogous to bounds for the binomial distribution due to Leon and Perron (2003) and Talagrand (1994). We also establish a convex ordering for sampling without replacement from populations of real numbers between zero and one: a population of all zeros or ones (and hence yielding a hypergeometric distribution in the upper bound) gives the extreme case.

Download