Towards room-temperature single-layer graphene synthesis by C60 Supersonic Molecular Beam Epitaxy


Abstract in English

High-kinetic energy impacts between inorganic surfaces and molecular beams seeded by organics represent a fundamental case study in materials science, most notably when they activate chemical-physical processes leading to nanocrystals growth. Here we demonstrate single-layer graphene synthesis on copper by C60 supersonic molecular beam (SuMBE) epitaxy at 645 {deg}C, with the possibility of further reduction. Using a variety of electron spectroscopy and microscopy techniques, and first-principles simulations, we describe the chemical-physical mechanisms activated by SuMBE resulting in graphene growth. In particular, we find a crucial role of high-kinetic energy deposition in enhancing the organic/inorganic interface interaction, to control the cage openings and to improve the growing film quality. These results, while discussed in the specific case of graphene on copper, are potentially extendable to different metallic or semiconductor substrates and where lower processing temperature is desirable.

Download