Quantum phase transitions of the Dirac oscillator in the Anti-Snyder model


Abstract in English

We obtain exact solutions of the (2+1) dimensional Dirac oscillator in a homogeneous magnetic field within the Anti-Snyder modified uncertainty relation characterized by a momentum cut-off ($pleq p_{text{max}}=1/ sqrt{beta}$). In ordinary quantum mechanics ($betato 0$) this system is known to have a single left-right chiral quantum phase transition (QPT). We show that a finite momentum cut-off modifies the spectrum introducing additional quantum phase transitions. It is also shown that the presence of momentum cut-off modifies the degeneracy of the states.

Download