The mutual information between two jointly distributed random variables $X$ and $Y$ is a functional of the joint distribution $P_{XY},$ which is sometimes difficult to handle or estimate. A coarser description of the statistical behavior of $(X,Y)$ is given by the marginal distributions $P_X, P_Y$ and the adjacency relation induced by the joint distribution, where $x$ and $y$ are adjacent if $P(x,y)>0$. We derive a lower bound on the mutual information in terms of these entities. The bound is obtained by viewing the channel from $X$ to $Y$ as a probability distribution on a set of possible actions, where an action determines the output for any possible input, and is independently drawn. We also provide an alternative proof based on convex optimization, that yields a generally tighter bound. Finally, we derive an upper bound on the mutual information in terms of adjacency events between the action and the pair $(X,Y)$, where in this case an action $a$ and a pair $(x,y)$ are adjacent if $y=a(x)$. As an example, we apply our bounds to the binary deletion channel and show that for the special case of an i.i.d. input distribution and a range of deletion probabilities, our lower and upper bounds both outperform the best known bounds for the mutual information.