No Arabic abstract
Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, in particular in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. We illustrate the complementarity of these two approaches by comparing the SV data with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES SV images. We analyse the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially-varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and well-captured by the maps of observing conditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on $N(z)$, the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak lensing analyses. The framework presented here is relevant to all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope (LSST), which will require detailed null-tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky.
We study the clustering of galaxies detected at $i<22.5$ in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using $2.3times 10^6$ galaxies over a contiguous 116 deg$^2$ region in five bins of photometric redshift width $Delta z = 0.2$ in the range $0.2 < z < 1.2.$ The impact of photometric redshift errors are assessed by comparing results using a template-based photo-$z$ algorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper (Leistedt et al 2015) presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterize and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects we measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck $Lambda$CDM model, finding agreement with CFHTLS measurements with $chi^2$ of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. We test a linear bias model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark-matter clustering. The precision of the data allow us to determine that the linear bias model describes the observed galaxy clustering to $2.5%$ accuracy down to scales at least $4$ to $10$ times smaller than those on which linear theory is expected to be sufficient.
We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshift error and outlier rate. The lensing measurement has a total signal-to-noise of 29 over scales $0.09 < R < 15$ Mpc/$h$, including all lenses over a wide redshift range $0.2 < z < 0.8$. Dividing the lenses into three redshift bins for this constant moving number density sample, we find no evidence for evolution in the halo mass with redshift. We obtain consistent results for the lensing measurement with two independent shear pipelines, ngmix and im3shape. We perform a number of null tests on the shear and photometric redshift catalogs and quantify resulting systematic uncertainties. Covariances from jackknife subsamples of the data are validated with a suite of 50 mock surveys. The results and systematics checks in this work provide a critical input for future cosmological and galaxy evolution studies with the DES data and redMaGiC galaxy samples. We fit a Halo Occupation Distribution (HOD) model, and demonstrate that our data constrains the mean halo mass of the lens galaxies, despite strong degeneracies between individual HOD parameters.
We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find $sigma_8 (Omega_{rm m}/0.3)^{0.5} = 0.81 pm 0.06$ (68% confidence), after marginalising over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About $20$% of our error bar comes from marginalising over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both datasets. Our uncertainties are $sim$30% larger than those from CFHTLenS when we carry out a comparable analysis of the two datasets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of $sigma_8 (Omega_{rm m}/0.3)^{0.5}$ is present regardless of the value of $w$.