Traffic-driven epidemic spreading in correlated networks


Abstract in English

In spite of the extensive previous efforts on traffic dynamics and epidemic spreading in complex networks, the problem of traffic-driven epidemic spreading on {em correlated} networks has not been addressed. Interestingly, we find that the epidemic threshold, a fundamental quantity underlying the spreading dynamics, exhibits a non-monotonic behavior in that it can be minimized for some critical value of the assortativity coefficient, a parameter characterizing the network correlation. To understand this phenomenon, we use the degree-based mean-field theory to calculate the traffic-driven epidemic threshold for correlated networks. The theory predicts that the threshold is inversely proportional to the packet-generation rate and the largest eigenvalue of the betweenness matrix. We obtain consistency between theory and numerics. Our results may provide insights into the important problem of controlling/harnessing real-world epidemic spreading dynamics driven by traffic flows.

Download