Do you want to publish a course? Click here

A re-evaluation of the central velocity-dispersion profile in NGC 6388

157   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, two independent groups found very different results when measuring the central velocity dispersion of the galactic globular cluster NGC 6388 with different methods. While Lutzgendorf et al. (2011) found a rising profile and a high central velocity dispersion (23.3 km/s), measurements obtained by Lanzoni et al. (2013) showed a value 40% lower. The value of the central velocity dispersion has a serious impact on the mass and possible presence of an intermediate-mass black hole at the center of NGC 6388. We use a photometric catalog of NGC 6388 to create a simulated SINFONI and ARGUS dataset. The construction of the IFU data cube is done with different observing conditions reproducing the conditions reported for the original observations as closely as possible. In addition, we produce an N-body realization of a 10^6 M_SUN stellar cluster with the same photometric properties as NGC 6388 to account for unresolved stars. We find that the individual radial velocities, i.e. the measurements from the simulated SINFONI data, are systematically biased towards lower velocity dispersions. The reason is that due to the wings in the point spread function the velocities get biased towards the mean cluster velocity. This study shows that even with AO supported observations, individual radial velocities in crowded fields are likely to be biased. The ARGUS observations do not show this kind of bias but were found to have larger uncertainties than previously obtained. We find a bias towards higher velocity dispersions in the ARGUS pointing when fixing the extreme velocities of the three brightest stars but find those variations are within the determined uncertainties. We rerun Jeans models and fit the kinematic profile with the new uncertainties. This yields a BH mass of M_BH = (2.8 +- 0.4) x 10^4 M_SUN and M/L ratio M/L = (1.6 +- 0.1) M_SUN/L_SUN, consistent with our previous results.



rate research

Read More

136 - B. Lanzoni 2013
By combining high spatial resolution and wide-field spectroscopy performed, respectively, with SINFONI and FLAMES at the ESO/VLT we measured the radial velocities of more than 600 stars in the direction of NGC 6388, a Galactic globular cluster which is suspected to host an intermediate-mass black hole. Approximately 55% of the observed targets turned out to be cluster members. The cluster velocity dispersion has been derived from the radial velocity of individual stars: 52 measurements in the innermost 2, and 276 stars located between 18 and 600. The velocity dispersion profile shows a central value of ~13 km/s, a flat behavior out to ~60 and a decreasing trend outwards. The comparison with spherical and isotropic models shows that the observed density and velocity dispersion profiles are inconsistent with the presence of a central black hole more massive than ~2000 Msol. These findings are at odds with recent results obtained from integrated light spectra, showing a velocity dispersion profile with a steep central cusp of 23-25 km/s at r<2 and suggesting the presence of a black hole with a mass of 17,000 Msol (Lutzgendorf et al. 2011). We also found some evidence of systemic rotation with amplitude Arot ~8 km/s in the innermost 2 (0.13 pc), decreasing to Arot= 3.2 km/s at 18<r<160.
145 - Warren R. Brown 2009
We present a spectroscopic sample of 910 distant halo stars from the Hypervelocity Star survey from which we derive the velocity dispersion profile of the Milky Way halo. The sample is a mix of 74% evolved horizontal branch stars and 26% blue stragglers. We estimate distances to the stars using observed colors, metallicities, and stellar evolution tracks. Our sample contains twice as many objects with R>50 kpc as previous surveys. We compute the velocity dispersion profile in two ways: with a parametric method based on a Milky Way potential model, and with a non-parametric method based on the caustic technique originally developed to measure galaxy cluster mass profiles. The resulting velocity dispersion profiles are remarkably consistent with those found by two independent surveys based on other stellar populations: the Milky Way halo exhibits a mean decline in radial velocity dispersion of -0.38+-0.12 km/s/kpc over 15<R<75 kpc. This measurement is a useful basis for calculating the total mass and mass distribution of the Milky Way halo.
NGC 3311, the central galaxy of the Hydra I cluster, shows signatures of recent infall of satellite galaxies from the cluster environment. Previous work has shown that the line-of-sight velocity dispersion of the stars and globular clusters in the extended halo of NGC 3311 rises up to the value of the cluster velocity dispersion. We performed multi-object spectroscopic observations of the diffuse stellar halo of NGC 3311 using VLT/FORS2 in MXU mode to mimic a coarse `IFU. We use pPXF to extract the kinematic information. We find a homogeneous velocity and velocity dispersion field within r<10 kpc. Beyond this radius, both the velocities and dispersions start to depend on azimuth angle and show a significant intrinsic scatter. The inner spheroid of NGC 3311 can be described as a slow rotator. Outside 10 kpc the cumulative angular momentum is rising. If the radial dependence alone is considered, the velocity dispersion does not simply rise but fills an increasingly large range of values with two well defined envelopes. The lower envelope is about constant at 200 km/s. The upper envelope rises smoothly, joining the velocity dispersion of the outer cluster galaxies. We interpret this behaviour as the superposition of tracer populations with increasingly shallower radial distributions between the extremes of the inner stellar populations and the cluster galaxies. Simple Jeans models illustrate that a range of of mass profiles with different anisotropies can account for all observed velocity dispersions, including radial MOND models. Jeans models using one tracer population with a unique density profile are not able to explain the large range of the observed kinematics. Previous claims about the cored dark halo of NGC 3311 are therefore probably not valid. This may in general apply to central cluster galaxies with rising velocity dispersion profiles, where infall processes are important.
As part of the ESO-VLT Multi-Instrument Kinematic Survey (MIKiS) of Galactic globular clusters, we present a detailed investigation of the internal kinematics of NGC 5986. The analysis is based on about 300 individual radial velocities of stars located at various distances from the cluster center, up to 300 arcseconds (about 4 half-mass radii). Our analysis reveals the presence of a solid-body rotation extending from the cluster center to the outermost regions probed by the data, and a velocity dispersion profile initially declining with the distance from the clusters center, but flattening and staying constant at ~5 km/s for distances larger than about one half-mass radius. This is the first globular cluster for which evidence of the joint presence of solid-body rotation and flattening in the outer velocity dispersion profile is found. The combination of these two kinematical features provides a unique opportunity to shed light on fundamental aspects of globular cluster dynamics and probe the extent to which internal relaxation, star escape, angular momentum transport and loss, and the interaction with the Galaxy tidal field can affect a clusters dynamical evolution and determine its current kinematical properties. We present the results of a series of N-body simulations illustrating the possible dynamical paths leading to kinematic features like those observed in this cluster and the fundamental dynamical processes that underpin them.
133 - D. Cseh , P. Kaaret , S. Corbel 2010
We present the results of deep radio observations with the Australia Telescope Compact Array (ATCA) of the globular cluster NGC 6388. We show that there is no radio source detected (with a r.m.s. noise level of 27 uJy) at the cluster centre of gravity or at the locations of the any of the Chandra X-ray sources in the cluster. Based on the fundamental plane of accreting black holes which is a relationship between X-ray luminosity, radio luminosity and black hole mass, we place an upper limit of 1500 M_sun on the mass of the putative intermediate-mass black hole located at the centre of NGC 6388. We discuss the uncertainties of this upper limit and the previously suggested black hole mass of 5700 M_sun based on surface density profile analysis.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا