A Study of Active Shielding Optimized for 1-80 keV Wide-Band X-ray Detector in Space


Abstract in English

Active shielding is an effective technique to reduce background signals in hard X-ray detectors and to enable observing darker sources with high sensitivity in space. Usually the main detector is covered with some shield detectors made of scintillator crystals such as BGO (Bi$_4$Ge$_3$O$_{12}$), and the background signals are filtered out using anti-coincidence among them. Japanese X-ray observing satellites Suzaku and ASTRO-H employed this technique in their hard X-ray instruments observing at > 10 keV. In the next generation X-ray satellites, such as the NGHXT proposal, a single hybrid detector is expected to cover both soft (1-10 keV) and hard (> 10 keV) X-rays for effectiveness. However, present active shielding is not optimized for the soft X-ray band, 1-10 keV. For example, Bi and Ge, which are contained in BGO, have their fluorescence emission lines around 10 keV. These lines appear in the background spectra obtained by ASTRO-H Hard X-ray Imager, which are non-negligible in its observation energy band of 5-80 keV. We are now optimizing the design of active shields for both soft and hard X-rays at the same time. As a first step, we utilized a BGO crystal as a default material, and measured the L lines of Bi and K lines of Ge from it using the X-ray SOIPIX, XRPIX.

Download