Do you want to publish a course? Click here

Neighborhoods of periodic orbits and the stationary distribution of a noisy chaotic system

184   0   0.0 ( 0 )
 Added by Domenico Lippolis
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The finest state space resolution that can be achieved in a physical dynamical system is limited by the presence of noise. In the weak-noise approximation the neighborhoods of deterministic periodic orbits can be computed as distributions stationary under the action of a local Fokker-Planck operator and its adjoint. We derive explicit formulae for widths of these distributions in the case of chaotic dynamics, when the periodic orbits are hyperbolic. The resulting neighborhoods form a basis for functions on the attractor. The global stationary distribution, needed for calculation of long-time expectation values of observables, can be expressed in this basis.



rate research

Read More

The field of quantum chaos originated in the study of spectral statistics for interacting many-body systems, but this heritage was almost forgotten when single-particle systems moved into the focus. In recent years new interest emerged in many-body aspects of quantum chaos. We study a chain of interacting, kicked spins and carry out a semiclassical analysis that is capable of identifying all kinds of genuin many-body periodic orbits. We show that the collective many-body periodic orbits can fully dominate the spectra in certain cases.
Electric drive using dc shunt motor or permanent magnet dc (PMDC) motor as prime mover exhibits bifurcation and chaos. The characteristics of dc shunt and PMDC motors are linear in nature. These motors are controlled by pulse width modulation (PWM) technique with the help of semiconductor switches. These switches are nonlinear element that introduces nonlinear characteristics in the drive. Any nonlinear system can exhibit bifurcation and chaos. dc shunt or PMDC drives show normal behavior with certain range of parameter values. It is also observed that these drive show chaos for significantly large ranges of parameter values. In this paper we present a method for controlling chaos applicable to dc shunt and PMDC drives. The results of numerical investigation are presented.
We measure elastomechanical spectra for a family of thin shells. We show that these spectra can be described by a semiclassical trace formula comprising periodic orbits on geodesics, with the periods of these orbits consistent with those extracted from experiment. The influence of periodic orbits on spectra in the case of two-dimensional curved geometries is thereby demonstrated, where the parameter corresponding to Plancks constant in quantum systems involves the wave number and the curvature radius. We use these findings to explain the marked clustering of levels when the shell is hemispherical.
163 - G. Ruiz , T. Bountis , C. Tsallis 2011
We study chaotic orbits of conservative low--dimensional maps and present numerical results showing that the probability density functions (pdfs) of the sum of $N$ iterates in the large $N$ limit exhibit very interesting time-evolving statistics. In some cases where the chaotic layers are thin and the (positive) maximal Lyapunov exponent is small, long--lasting quasi--stationary states (QSS) are found, whose pdfs appear to converge to $q$--Gaussians associated with nonextensive statistical mechanics. More generally, however, as $N$ increases, the pdfs describe a sequence of QSS that pass from a $q$--Gaussian to an exponential shape and ultimately tend to a true Gaussian, as orbits diffuse to larger chaotic domains and the phase space dynamics becomes more uniformly ergodic.
189 - Caroline L. Wormell 2021
Many important high-dimensional dynamical systems exhibit complex chaotic behaviour. Their complexity means that their dynamics are necessarily comprehended under strong reducing assumptions. It is therefore important to have a clear picture of these reducing assumptions range of validity. The highly influential chaotic hypothesis of Gallavotti and Cohen states that the large-scale dynamics of high-dimensional systems are effectively hyperbolic, which implies many felicitous statistical properties. We demonstrate, contrary to the chaotic hypothesis, the existence of non-hyperbolic large-scale dynamics in a mean-field coupled system. To do this we reduce the system to its thermodynamic limit, which we approximate numerically with a Chebyshev Galerkin transfer operator discretisation. This enables us to obtain a high precision estimate of a homoclinic tangency, implying a failure of hyperbolicity. Robust non-hyperbolic behaviour is expected under perturbation. As a result, the chaotic hypothesis should not be assumed to hold in all systems, and a better understanding of the domain of its validity is required.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا