Do you want to publish a course? Click here

Quantum Monte Carlo Calculation of the Binding Energy of Bilayer Graphene

218   0   0.0 ( 0 )
 Added by Elaheh Mostaani
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report diffusion quantum Monte Carlo calculations of the interlayer binding energy of bilayer graphene. We find the binding energies of the AA- and AB-stacked structures at the equilibrium separation to be 11.5(9) and 17.7(9) meV/atom, respectively. The out-of-plane zone-center optical phonon frequency predicted by our binding-energy curve is consistent with available experimental results. As well as assisting the modeling of interactions between graphene layers, our results will facilitate the development of van der Waals exchange-correlation functionals for density functional theory calculations.



rate research

Read More

We report the first experimental study of the quantum interference correction to the conductivity of bilayer graphene. Low-field, positive magnetoconductivity due to the weak localisation effect is investigated at different carrier densities, including those around the electroneutrality region. Unlike conventional 2D systems, weak localisation in bilayer graphene is affected by elastic scattering processes such as intervalley scattering. Analysis of the dephasing determined from the magnetoconductivity is complemented by a study of the field- and density-dependent fluctuations of the conductance. Good agreement in the value of the coherence length is found between these two studies.
Magic-angle twisted bilayer graphene (MATBG) is notable as a highly tunable platform for investigating strongly correlated phenomena such as high-$T_c$ superconductivity and quantum spin liquids, due to easy control of doping level through gating and sensitive dependence of the magic angle on hydrostatic pressure. Experimental observations of correlated insulating states, unconventional superconductivity and ferromagnetism in MATBG indicate that this system exhibits rich exotic phases. In this work, using density functional theory calculations in conjunction with the effective screening medium method, we find the MATBG under pressure at a twisting angle of $2.88unicode{xb0}$ and simulate how its electronic states evolve when doping level and out-of-plane electric field are gate-tuned. Our calculations show that, at doping levels between two electrons and four holes per moir{e} unit cell, a ferromagnetic solution with spin density localized at AA stacking sites is lower in energy than the nonmagnetic solution. The magnetic moment of this ferromagnetic state decreases with both electron and hole doping and vanishes at four electrons/holes doped per moir{e} unit cell. Hybridization between the flat bands at the Fermi level and the surrounding dispersive bands can take place at finite doping. Moreover, upon increasing the out-of-plane electric field at zero doping, a transition from the ferromagnetic state to the nonmagnetic one is seen. We also analyze the interlayer bonding character due to the flat bands via Wannier functions. Finally, we report trivial band topology of the flat bands in the ferromagnetic state at a certain doping level.
Berry phase plays an important role in determining many physical properties of quantum systems. However, a Berry phase altering energy spectrum of a quantum system is comparatively rare. Here, we report an unusual tunable valley polarized energy spectra induced by continuously tunable Berry phase in Bernal-stacked bilayer graphene quantum dots. In our experiment, the Berry phase of electron orbital states is continuously tuned from about pi to 2pi by perpendicular magnetic fields. When the Berry phase equals pi or 2pi, the electron states in the two inequivalent valleys are energetically degenerate. By altering the Berry phase to noninteger multiples of pi, large and continuously tunable valley polarized energy spectra are detected in our experiment. The observed Berry phase-induced valley splitting, on the order of 10 meV at a magnetic field of 1 T, is about 100 times larger than Zeeman splitting for spin, shedding light on graphene-based valleytronics.
Using terahertz time-domain spectroscopy, the real part of optical conductivity [$sigma_{1}(omega)$] of twisted bilayer graphene was obtained at different temperatures (10 -- 300 K) in the frequency range 0.3 -- 3 THz. On top of a Drude-like response, we see a strong peak in $sigma_{1} (omega)$ at $sim$2.7 THz. We analyze the overall Drude-like response using a disorder-dependent (unitary scattering) model, then attribute the peak at 2.7 THz to an enhanced density of states at that energy, that is caused by the presence of a van Hove singularity arising from a commensurate twisting of the two graphene layers.
Assuming diffusive carrier transport and employing an effective medium theory, we calculate the temperature dependence of bilayer graphene conductivity due to Fermi-surface broadening as a function of carrier density. We find that the temperature dependence of the conductivity depends strongly on the amount of disorder. In the regime relevant to most experiments, the conductivity is a function of T/T*, where T* is the characteristic temperature set by disorder. We demonstrate that experimental data taken from various groups collapse onto a theoretically predicted scaling function.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا