No Arabic abstract
The first Fermi Large Area Telescope (LAT) catalogue of sources (1FHL) emitting at high energies (above 10 GeV) reports the details of 514 objects detected in the first three years of the Fermi mission. Of these, 71 were reported as unidentified in the 1FHL catalogue, although six are likely to be associated with a supernova remnant (SNR), a Pulsar Wind Nebula (PWN) or a combination of both, thereby leaving a list of 65 still unassociated objects. Herein, we report a preliminary analysis on this sample of objects concentrating on nine 1FHL sources, which were found to have a clear optical extragalactic classification. They are all blazar, eight BL Lac and one flat spectrum radio quasar, typically at redshift greater than 0.1.
We report the results from our analysis of a large set of archival data acquired with the X-ray telescope (XRT) onboard Swift, covering the sky region surrounding objects from the first Fermi Large Area Telescope (LAT) catalogue of high-energy sources (1FHL), which still lack an association. Of the 23 regions analysed, ten did not show any evidence of X-ray emission, but 13 were characterised by the presence of one or more objects emitting in the 0.3-10 keV band. Only in a couple of cases is the X-ray counterpart located outside the Fermi positional uncertainty, while in all other cases the associations found are compatible with the high-energy error ellipses. All counterparts we found have been studied in detail by means of a multi-waveband approach to evaluate their nature or class; in most cases, we have been able to propose a likely or possible association except for one Fermi source whose nature remains doubtful at the moment. The majority of the likely associations are extragalactic in nature, most probably blazars of the BL Lac type.
At least a fraction of Gravitational Wave (GW) progenitors are expected to emit an electromagnetic (EM) signal in the form of a short gamma-ray burst (sGRB). Discovering such a transient EM counterpart is challenging because the LIGO/VIRGO localization region is much larger (several hundreds of square degrees) than the field of view of X-ray, optical and radio telescopes. The Fermi Large Area Telescope (LAT) has a wide field of view ($sim 2.4$ sr), and detects $sim 2-3$ sGRBs per year above 100 MeV. It can detect them not only during the short prompt phase, but also during their long-lasting high-energy afterglow phase. If other wide-field high-energy instruments such as Fermi-GBM, Swift-BAT or INTEGRAL-ISGRI cannot detect or localize with enough precision an EM counterpart during the prompt phase, the LAT can potentially pinpoint it with $lesssim 10$ arcmin accuracy during the afterglow phase. This routinely happens with gamma-ray bursts. Moreover, the LAT will cover the entire localization region within hours of any triggers during normal operations, allowing the $gamma$-ray flux of any EM counterpart to be measured or constrained. We illustrate two new ad hoc methods to search for EM counterparts with the LAT and their application to the GW candidate LVT151012.
The HAWC Collaboration released the 2HWC catalog of TeV sources, in which 19 show no association with any known high-energy (HE; E > 10 GeV) or very-high-energy (VHE; E > 300 GeV) sources. This catalog motivated follow-up studies by both the MAGIC and Fermi-LAT observatories with the aim of investigating gamma-ray emission over a broad energy band. In this paper, we report the results from the first joint work between HAWC, MAGIC and Fermi-LAT on three unassociated HAWC sources: 2HWC J2006+341, 2HWC J1907+084* and 2HWC J1852+013*. Although no significant detection was found in the HE and VHE regimes, this investigation shows that a minimum 1 degree extension (at 95% confidence level) and harder spectrum in the GeV than the one extrapolated from HAWC results are required in the case of 2HWC J1852+013*, while a simply minimum extension of 0.16 degrees (at 95% confidence level) can already explain the scenario proposed by HAWC for the remaining sources. Moreover, the hypothesis that these sources are pulsar wind nebulae is also investigated in detail.
A significant fraction of all $gamma$-ray sources detected by the Large Area Telescope aboard the fer satellite is still lacking a low-energy counterpart. In addition, there is still a large population of $gamma$-ray sources with associated low-energy counterparts that lack firm classifications. In the last 10 years we have undertaken an optical spectroscopic campaign to address the problem of unassociated/unidentified $gamma$-ray sources (UGSs), mainly devoted to observing blazars and blazar candidates because they are the largest population of $gamma$-ray sources associated to date. Here we describe the overall impact of our optical spectroscopic campaign on sources associated in fer-LAT catalogs, coupled with objects found in the literature. In the literature search, we kept track of efforts by different teams that presented optical spectra of counterparts or potential counterparts of fer-LAT catalog sources. Our summary includes an analysis of an additional 30 newly-collected optical spectra of counterparts or potential counterparts of fer-LAT sources of previously unknown nature.New spectra were acquired at the Blanco 4-m and OAN-SPM 2.1-m telescopes, and those available in the Sloan Digital Sky Survey (data release 15) archive. All new sources with optical spectra analyzed here are classified as blazars. Thanks to our campaign, we altogether discovered and classified 394 targets with an additional 123 objects collected from a literature search. We began our optical spectroscopic campaign between the release of the second and third fer-LAT source catalogs (2FGL and 3FGL, respectively), and classified about 25% of the sources with uncertain nature and discovered a blazar-like potential counterpart for $sim$10% of UGSs listed therein. In the 4FGL catalog, about 350 fer-LAT sources are classified to date thanks to our campaign. [incomplete abstract]
We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsars (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<=2 kpc) millisecond pulsars. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power-law in nature with exponential cutoffs at a few GeV, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of ~10^{30-31} erg/s are typical of the rare radio MSPs seen in X-rays.