Do you want to publish a course? Click here

QCD nature of dark energy at finite temperature: cosmological implications

95   0   0.0 ( 0 )
 Added by Kazem Azizi
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Veneziano ghost field has been proposed as an alternative source of dark energy whose energy density is consistent with the cosmological observations. In this model, the energy density of QCD ghost field is expressed in terms of QCD degrees of freedom at zero temperature. We extend this model to finite temperature to search the model predictions from late time to early universe. We depict the variations of QCD parameters entering the calculations, dark energy density, equation of state, Hubble and deceleration parameters on temperature from zero to a critical temperature. We compare our results with the observations and theoretical predictions existing at different eras. It is found that this model safely defines the universe from quark condensation up to now and its predictions are not in tension with those of the standard cosmology. The EoS parameter of dark energy is dynamical and evolves from $-1/3$ in the presence of radiation to $-1$ at late time. The finite temperature ghost dark energy predictions on the Hubble parameter well fit to those of $Lambda$CDM and observations at late time.



rate research

Read More

81 - B.G. Sidharth , A. Das , C.R. Das 2016
In this review we present a theory of cosmological constant and Dark Energy (DE), based on the topological structure of the vacuum. The Multiple Point Principle (MPP) is reviewed. It demonstrates the existence of the two vacua into the SM. The Froggatt-Nielsens prediction of the top-quark and Higgs masses is given in the assumption that there exist two degenerate vacua in the SM. This prediction was improved by the next order calculations. We also considered B.G. Sidharths theory of cosmological constant based on the non-commutative geometry of the Planck scale space-time, what gives an extremely small DE density providing the accelerating expansion of the Universe. Theory of two degenerate vacua - the Planck scale phase and Electroweak (EW) phase - also is reviewed, topological defects in these vacua are investigated, also the Compton wavelength phase suggested by B.G. Sidharth was discussed. A general theory of the phase transition and the problem of the vacuum stability in the SM is reviewed. Assuming that the recently discovered at the LHC new resonance with mass $m_S simeq 750$ GeV is a new scalar $S$ bound state $6t + 6bar t$, earlier predicted by C.D. Froggatt, H.B. Nielsen and L.V. Laperashvili, we try to provide the vacuum stability in the SM and exact accuracy of the MPP.
61 - M.Chaichian , M.Hayashi 1996
We work out the method for evaluating the QCD coupling constant at finite temperature ($T$) by making use of the finite $T$ renormalization group equation up to the one-loop order on the basis of the background field method with the imaginary time formalism. The background field method, which maintains the explicit gauge invariance, provides notorious simplifications since one has to calculate only the renormalization constant of the background field gluon propagator. The results for the evolution of the QCD coupling constant at finite $T$ reproduce partially the ones obtained in the literature. We discuss, in particular, the origin of the discrepancies between different calculations, such as the choice of gauge, the break-down of Lorentz invariance, imaginary versus real time formalism and the applicability of the Ward identities at finite $T$.
An unexpected explanation for neutrino mass, Dark Matter (DM) and Dark Energy (DE) from genuine Quantum Chromodynamics (QCD) of the Standard Model (SM) is proposed here, while the strong CP problem is resolved without any need to account for fundamental axions. We suggest that the neutrino sector can be in a double phase in the Universe: i) relativistic neutrinos, belonging to the SM; ii) non-relativistic condensate of Majorana neutrinos. The condensate of neutrinos can provide an attractive alternative candidate for the DM, being in a cold coherent state. We will explain how neutrinos, combining into Cooper pairs, can form collective low-energy degrees of freedom, hence providing a strongly motivated candidate for the QCD (composite) axion.
The today estimated value of dark energy can be achieved by the vacuum condensate induced by neutrino mixing phenomenon. Such a tiny value is recovered for a cut-off of the order of Planck scale and it is linked to the sub eV neutrino mass scale. Contributions to dark energy from auxiliary fields or mechanisms are not necessary in this approach.
Here we analyze the finite temperature expectation values of the charge and current densities for a massive fermionic quantum field with nonzero chemical potential, $mu$, induced by a magnetic flux running along the axis of an idealized cosmic string. These densities are decomposed into the vacuum expectation values and contributions coming from the particles and antiparticles. Specifically the charge density is an even periodic function of the magnetic flux with the period equal to the quantum flux and an odd function of the chemical potential. The only nonzero component of the current density corresponds to the azimuthal current and it is an odd periodic function of the magnetic flux and an even function of the chemical potential. Both analyzed are developed for the cases where $|mu |$ is smaller than the mass of the field quanta, $m$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا