Do you want to publish a course? Click here

Graphene Nanobubble: A New Optical Nonlinear Material

268   0   0.0 ( 0 )
 Added by Qiaoliang Bao Dr.
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene is a rising star in nonlinear optics due to its saturable absorption and giant Kerr nonlinearity, these properties are useful in digital optics based on optical nonlinear devices. However, practical applications require large optical nonlinearities and these are inherently limited by the interaction length of atomically thin graphene. Here, we demonstrate optical bistability in a Fabry Perot cavity containing monolayer and bilayer graphene which have been restructured to form nanobubbles. We find that graphene nanobubble can act as a new type of optical nonlinear media due to its vertical side wall as well as added curvature, which enable strong non linear dispersive effects leading to a large optically induced phase change. Unlike thermally induced bistability, the all optical switching between two transmission states happens within a time scale of tens of nanoseconds. Nanobubble based optical devices with intrinsic optical nonlinearity help to overcome the optical path length limitation of atomically thin two dimensional films and allow us to explore the promise of using such elements as the building block of digital all-optical circuitry.



rate research

Read More

We present a theoretical study of the optical response of a nonlinear oscillator formed by coupling a metal nanoparticle local surface plasmon resonance to excitonic degrees of freedom in a monolayer transition-metal dichalcogenide. We show that the combined system should exhibit strong anharmonicity in its low-lying states, predicting for example a seven order-of-magnitude increase in nonlinearity relative to a silicon photonic crystal cavity. Then, we demonstrate that such system exhibits strong quantum features such as antibunching and non-Gaussianity. Arrays of such nanoscale nonlinear oscillators could be used to realize novel optical metamaterials; alternatively, an individual nanoparticle-monolayer construct could be coupled to an optical resonator to mediate efficient input-output coupling to propagating fields.
Second-order nonlinear optical response allows to detect different properties of the system associated with the inversion symmetry breaking. Here, we use a second harmonic generation effect to investigate the alignment of a graphene/hexagonal Boron Nitride heterostructure. To achieve that, we activate a commensurate-incommensurate phase transition by a thermal annealing of the sample. We find that this structural change in the system can be directly observed through a strong modification of a nonlinear optical signal. This result reveals the potential of a second harmonic generation technique for probing structural properties of layered systems.
Quantum geometric tensor (QGT), including a symmetric real part defined as quantum metric and an antisymmetric part defined as Berry curvature, is essential for understanding many phenomena. We studied the photogalvanic effect of a multiple-band system with time-reversal-invariant symmetry by theoretical analysis in this work. We concluded that the integral of gradient of the symmetric part of QGT in momentum space is related to the linearly photogalvanic effect, while the integral of gradient of Berry curvature is related to the circularly photogalvanic effect. Our work afforded an alternative interpretation for the photogalvanic effect in the view of QGT, and a simple approach to detect the QGT by nonlinear optical response.
We report experiments demonstrating Quantum Interference Control (QuIC) based on two nonlinear optical absorption processes in semiconductors. We use two optical beams of frequencies $omega$ and $3omega /2$ incident on AlGaAs and measure the injection current due to the interference between 2- and 3-photon absorption processes. We analyze the dependence of the injection current on the intensities and phases of the incident fields.
A stochastic nonlinear electrical characteristic of graphene is reported. Abrupt current changes are observed from voltage sweeps between the source and drain with an on/off ratio up to 10^(3). It is found that graphene channel experience the topological change. Active radicals in an uneven graphene channel cause local changes of electrostatic potential. Simulation results based on the self-trapped electron and hole mechanism account well for the experimental data. Our findings illustrate an important issue of reliable electron transports and help for the understanding of transport properties in graphene devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا