No Arabic abstract
Observations of the EoR with the 21-cm hyperfine emission of neutral hydrogen (HI) promise to open an entirely new window onto the formation of the first stars, galaxies and accreting black holes. In order to characterize the weak 21-cm signal, we need to develop imaging techniques which can reconstruct the extended emission very precisely. Here, we present an inversion technique for LOFAR baselines at NCP, based on a Bayesian formalism with optimal spatial regularization, which is used to reconstruct the diffuse foreground map directly from the simulated visibility data. We notice the spatial regularization de-noises the images to a large extent, allowing one to recover the 21-cm power-spectrum over a considerable $k_{perp}-k_{para}$ space in the range of $0.03,{rm Mpc^{-1}}<k_{perp}<0.19,{rm Mpc^{-1}}$ and $0.14,{rm Mpc^{-1}}<k_{para}<0.35,{rm Mpc^{-1}}$ without subtracting the noise power-spectrum. We find that, in combination with using the GMCA, a non-parametric foreground removal technique, we can mostly recover the spherically average power-spectrum within $2sigma$ statistical fluctuations for an input Gaussian random rms noise level of $60 , {rm mK}$ in the maps after 600 hrs of integration over a $10 , {rm MHz}$ bandwidth.
Detection of 21~cm emission of HI from the epoch of reionization, at redshifts z>6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the HI signal arise from power received far away from the primary field of view. We identify diffuse emission near the horizon as a significant contributing factor, even on wide antenna spacings that usually represent structures on small scales. For signals entering through the primary field of view, compact emission dominates the foreground contamination. These two mechanisms imprint a characteristic pitchfork signature on the foreground wedge in Fourier delay space. Based on these results, we propose that selective down-weighting of data based on antenna spacing and time can mitigate foreground contamination substantially by a factor ~100 with negligible loss of sensitivity.
We use hydrodynamics and radiative transfer simulations to study the 21~cm signal around a bright QSO at $z sim 10$. Due to its powerful UV and X-ray radiation, the QSO quickly increases the extent of the fully ionized bubble produced by the pre-existing stellar type sources, in addition to partially ionize and heat the surrounding gas. As expected, a longer QSO lifetime, $t_{rm QSO}$, results in a 21~cm signal in emission located at increasingly larger angular radii, $theta$, and covering a wider range of $theta$. Similar features can be obtained with a higher galactic emissivity efficiency, $f_{rm UV}$, so that determining the origin of a large ionized bubble (i.e. QSO vs stars) is not straightforward. Such degeneracy could be reduced by taking advantage of the finite light traveltime effect, which is expected to affect an HII region produced by a QSO differently from one created by stellar type sources. From an observational point of view, we find that the 21 cm signal around a QSO at various $t_{rm QSO}$ could be detected by SKA1-low with a high signal-noise ratio (S/N). As a reference, for $t_{rm QSO} = 10,rm Myr$, a S/N $sim 8$ is expected assuming that no pre-heating of the IGM has taken place due to high-$z$ energetic sources, while it can reach value above 10 in case of pre-heating. Observations of the 21~cm signal from the environment of a high-$z$ bright QSO could then be used to set constraints on its lifetime, as well as to reduce the degeneracy between $f_{rm UV}$ and $t_{rm QSO}$.
The highly redshifted 21 cm line of neutral hydrogen has become recognized as a unique probe of cosmology from relatively low redshifts (z ~ 1) up through the Epoch of Reionization (z ~ 8) and even beyond. To date, most work has focused on recovering the spherically averaged power spectrum of the 21 cm signal, since this approach maximizes the signal-to-noise in the initial measurement. However, like galaxy surveys, the 21 cm signal is affected by redshift space distortions, and is inherently anisotropic between the line-of-sight and transverse directions. A measurement of this anisotropy can yield unique cosmological information, potentially even isolating the matter power spectrum from astrophysical effects. However, in interferometric measurements, foregrounds also have an anisotropic footprint between the line-of-sight and transverse directions: the so-called foreground wedge. Although foreground subtraction techniques are actively being developed, a foreground avoidance approach of simply ignoring contaminated modes has arguably proven most successful to date. In this work, we analyze the effect of this foreground anisotropy in recovering the redshift space distortion signature in 21 cm measurements at both high and intermediate redshifts. We find the foreground wedge corrupts nearly all of the redshift space signal for even the largest proposed EoR experiments (HERA and the SKA), making cosmological information unrecoverable without foreground subtraction. The situation is somewhat improved at lower redshifts, where the redshift-dependent mapping from observed coordinates to cosmological coordinates significantly reduces the size of the wedge. Using only foreground avoidance, we find that a large experiment like CHIME can place non-trivial constraints on cosmological parameters.
We use the observed unresolved cosmic X-ray background (CXRB) in the 0.5-2 keV band and existing upper limits on the 21-cm power spectrum to constrain the high-redshift population of X-ray sources, focusing on their effect on the thermal history of the Universe and the cosmic 21-cm signal. Because the properties of these sources are poorly constrained, we consider hot gas, X-ray binaries and mini-quasars (i.e., sources with soft or hard X-ray spectra) as possible candidates. We find that (1) the soft-band CXRB sets an upper limit on the X-ray efficiency of sources that existed before the end of reionization, which is one-to-two orders of magnitude higher than typically assumed efficiencies, (2) hard sources are more effective in generating the CXRB than the soft ones, (3) the commonly-assumed limit of saturated heating is not valid during the first half of reionization in the case of hard sources, with any allowed value of X-ray efficiency, (4) the maximal allowed X-ray efficiency sets a lower limit on the depth of the absorption trough in the global 21-cm signal and an upper limit on the height of the emission peak, while in the 21-cm power spectrum it sets a minimum amplitude and frequency for the high-redshift peaks, and (5) the existing upper limit on the 21-cm power spectrum sets a lower limit on the X-ray efficiency for each model. When combined with the 21-cm global signal, the CXRB will be useful for breaking degeneracies and helping constrain the nature of high-redshift heating sources.
The star-forming reservoir in the distant Universe can be detected through HI 21-cm absorption arising from either cool gas associated with a radio source or from within a galaxy intervening the sight-line to the continuum source. In order to test whether the nature of the absorber can be predicted from the profile shape, we have compiled and analysed all of the known redshifted (z > 0.1) HI 21-cm absorption profiles. Although between individual spectra there is too much variation to assign a typical spectral profile, we confirm that associated absorption profiles are on average, wider than their intervening counterparts. It is widely hypothesised that this is due to high velocity nuclear gas feeding the central engine, absent in the more quiescent intervening absorbers. Modelling the column density distribution of the mean associated and intervening spectra, we confirm that the additional low optical depth, wide dispersion component, typical of associated absorbers, arises from gas within the inner parsec. With regard to the potential of predicting the absorber type in the absence of optical spectroscopy, we have implemented machine learning techniques to the 55 associated and 43 intervening spectra, with each of the tested models giving a >80% accuracy in the prediction of the absorber type. Given the impracticability of follow-up optical spectroscopy of the large number of 21-cm detections expected from the next generation of large radio telescopes, this could provide a powerful new technique with which to determine the nature of the absorbing galaxy.