Do you want to publish a course? Click here

Calculation method of spin accumulations and spin signals in nanostructures using spin resistors

303   0   0.0 ( 0 )
 Added by Laurent Vila
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The understanding and calculation of spin transport are essential elements for the development of spintronics devices. Here, we propose a simple method to calculate analytically the spin accumulations, spin currents and magnetoresistances in complex systems. This can be used both for CPP experiments in multilayers and for multiterminal nanostructures made of semiconductors, oxides, metals and carbon allotropes.



rate research

Read More

Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large resistivity of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.
We demonstrate a mesoscopic spin polarizer/analyzer system that allows the spin polarization of current from a quantum point contact in an in-plane magnetic field to be measured. A transverse focusing geometry is used to couple current from an emitter point contact into a collector point contact. At large in-plane fields, with the point contacts biased to transmit only a single spin (g < e^2/h), the voltage across the collector depends on the spin polarization of the current incident on it. Spin polarizations of greater than 80% are found for both emitter and collector at 300mK and 7T in-plane field.
We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with conductivity of Py is observed, evidencing that Elliott-Yafet is the dominant spin relaxation mechanism in Permalloy. Completing the data set with additional data found in literature, we obtain $lambda_{Py}= (0.91pm 0.04) (fOmega m^2)/rho_{Py}$.
288 - C. Bruene 2008
We report the first electrical manipulation and detection of the mesoscopic intrinsic spin-Hall effect (ISHE) in semiconductors through non-local electrical measurement in nano-scale H-shaped structures built on high mobility HgTe/HgCdTe quantum wells. By controlling the strength of the spin-orbit splittings and the n-type to p-type transition by a top-gate, we observe a large non-local resistance signal due to the ISHE in the p-regime, of the order of kOhms, which is several orders of magnitude larger than in metals. In the n-regime, as predicted by theory, the signal is at least an order of magnitude smaller. We verify our experimental observation by quantum transport calculations which show quantitative agreement with the experiments.
Predictions state that graphene can spontaneously develop magnetism from the Coulomb repulsion of its $pi$-electrons, but its experimental verification has been a challenge. Here, we report on the observation and manipulation of individual magnetic moments localized in graphene nanostructures on a Au(111) surface. Using scanning tunneling spectroscopy, we detected the presence of single electron spins localized around certain zigzag sites of the carbon backbone via the Kondo effect. Two near-by spins were found coupled into a singlet ground state, and the strength of their exchange interaction was measured via singlet-triplet inelastic tunnel electron excitations. Theoretical simulations demonstrate that electron correlations result in spin-polarized radical states with the experimentally observed spatial distributions. Hydrogen atoms bound to these radical sites quench their magnetic moment, permitting us to switch the spin of the nanostructure using the tip of the microscope.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا