No Arabic abstract
Motivated by recent experiments observing spin-orbit torque (SOT) acting on the magnetization $vec{m}$ of a ferromagnetic (F) overlayer on the surface of a three-dimensional topological insulator (TI), we investigate the origin of the SOT and the magnetization dynamics in such systems. We predict that lateral F/TI bilayers of finite length, sandwiched between two normal metal leads, will generate a large antidamping-like SOT per very low charge current injected parallel to the interface. The large values of antidamping-like SOT are {it spatially localized} around the transverse edges of the F overlayer. Our analysis is based on adiabatic expansion (to first order in $partial vec{m}/partial t$) of time-dependent nonequilibrium Green functions (NEGFs), describing electrons pushed out of equilibrium both by the applied bias voltage and by the slow variation of a classical degree of freedom [such as $vec{m}(t)$]. From it we extract formulas for spin torque and charge pumping, which show that they are reciprocal effects to each other, as well as Gilbert damping in the presence of SO coupling. The NEGF-based formula for SOT naturally splits into four components, determined by their behavior (even or odd) under the time and bias voltage reversal. Their complex angular dependence is delineated and employed within Landau-Lifshitz-Gilbert simulations of magnetization dynamics in order to demonstrate capability of the predicted SOT to efficiently switch $vec{m}$ of a perpendicularly magnetized F overlayer.
The spin mixing conductance (SMC) is a key quantity determining efficiency of spin transport across interfaces. Thus, knowledge of its precise value is required for accurate measurement of parameters quantifying numerous effects in spintronics, such as spin-orbit torque, spin Hall magnetoresistance, spin Hall effect and spin pumping. However, the standard expression for SMC, provided by the scattering theory in terms of the reflection probability amplitudes, is inapplicable when strong spin-orbit coupling (SOC) is present directly at the interface. This is the precisely the case of topological-insulator/ferromagnet and heavy-metal/ferromagnet interfaces of great contemporary interest. We introduce an approach where first-principles Hamiltonian of these interfaces, obtained from noncollinear density functional theory (ncDFT) calculations, is combined with charge conserving Floquet-nonequilibrium-Green-function formalism to compute {em directly} the pumped spin current $I^{S_z}$ into semi-infinite left lead of two-terminal heterostructures Cu/X/Co/Cu or Y/Co/Cu---where X=Bi$_2$Se$_3$ and Y=Pt or W---due to microwave-driven steadily precessing magnetization of the Co layer. This allows us extract an effective SMC as a prefactor in $I^{S_z}$ vs. precession cone angle $theta$ dependence, as long as it remains the same, $I^{S_z} propto sin^2 theta$, as in the case where SOC is absent. By comparing calculations where SOC in switched off vs. switched on in ncDFT calculations, we find that SOC consistently reduces the pumped spin current and, therefore, the effective SMC.
Spin torque from spin current applied to a nanoscale region of a ferromagnet can act as negative magnetic damping and thereby excite self-oscillations of its magnetization. In contrast, spin torque uniformly applied to the magnetization of an extended ferromagnetic film does not generate self-oscillatory magnetic dynamics but leads to reduction of the saturation magnetization. Here we report studies of the effect of spin torque on a system of intermediate dimensionality - a ferromagnetic nanowire. We observe coherent self-oscillations of magnetization in a ferromagnetic nanowire serving as the active region of a spin torque oscillator driven by spin orbit torques. Our work demonstrates that magnetization self-oscillations can be excited in a one-dimensional magnetic system and that dimensions of the active region of spin torque oscillators can be extended beyond the nanometer length scale.
We investigate the current-induced spin-orbit torque in thin topological insulator (TI) films in the presence of hybridization between the top and bottom surface states. We formulate the relation between spin torque and TI thickness, from which we derived the optimal value of the thickness to maximize the torque. We show numerically that in typical TI thin films made of $mathrm{Bi_2Se_3}$, the optimal thickness is about 3-5 nm.
Spin torques are at the heart of spin manipulations in spintronic devices. Here, we examine the existence of an optical spin-orbit torque, a relativistic spin torque originating from the spin-orbit coupling of an oscillating applied field with the spins. We compare the effect of the nonrelativistic Zeeman torque with the relativistic optical spin-orbit torque for ferromagnetic systems excited by a circularly polarised laser pulse. The latter torque depends on the helicity of the light and scales with the intensity, while being inversely proportional to the frequency. Our results show that the optical spin-orbit torque can provide a torque on the spins, which is quantitatively equivalent to the Zeeman torque. Moreover, temperature dependent calculations show that the effect of optical spin-orbit torque decreases with increasing temperature. However, the effect does not vanish in a ferromagnetic system, even above its Curie temperature.
Recent studies on the magneto-transport properties of topological insulators (TI) have attracted great attention due to the rich spin-orbit physics and promising applications in spintronic devices. Particularly the strongly spin-moment coupled electronic states have been extensively pursued to realize efficient spin-orbit torque (SOT) switching. However, so far current-induced magnetic switching with TI has only been observed at cryogenic temperatures. It remains a controversial issue whether the topologically protected electronic states in TI could benefit spintronic applications at room temperature. In this work, we report full SOT switching in a TI/ferromagnet bilayer heterostructure with perpendicular magnetic anisotropy at room temperature. The low switching current density provides a definitive proof on the high SOT efficiency from TI. The effective spin Hall angle of TI is determined to be several times larger than commonly used heavy metals. Our results demonstrate the robustness of TI as an SOT switching material and provide a direct avenue towards applicable TI-based spintronic devices.