Do you want to publish a course? Click here

Approaching Many-Body Localization from Disordered Luttinger Liquids via the Functional Renormalization Group

126   0   0.0 ( 0 )
 Added by Christoph Karrasch
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the interplay of interactions and disorder in a one-dimensional fermion lattice coupled adiabatically to infinite reservoirs. We employ both the functional renormalization group (FRG) as well as matrix product state techniques, which serve as an accurate benchmark for small systems. Using the FRG, we compute the length- and temperature-dependence of the conductance averaged over $10^4$ samples for lattices as large as $10^{5}$ sites. We identify regimes in which non-ohmic power law behavior can be observed and demonstrate that the corresponding exponents can be understood by adapting earlier predictions obtained perturbatively for disordered Luttinger liquids. In presence of both disorder and isolated impurities, the conductance has a universal single-parameter scaling form. This lays the groundwork for an application of the functional renormalization group to the realm of many-body localization.



rate research

Read More

382 - S. Grap , V. Meden 2009
We use Wilsons weak coupling ``momentum shell renormalization group method to show that two-particle interaction terms commonly neglected in bosonization of one-dimensional correlated electron systems with open boundaries are indeed irrelevant in the renormalization group sense. Our study provides a more solid ground for many investigations of Luttinger liquids with open boundaries.
We compare two fermionic renormalization group methods which have been used to investigate the electronic transport properties of one-dimensional metals with two-particle interaction (Luttinger liquids) and local inhomogeneities. The first one is a poor mans method setup to resum ``leading-log divergences of the effective transmission at the Fermi momentum. Generically the resulting equations can be solved analytically. The second approach is based on the functional renormalization group method and leads to a set of differential equations which can only for certain setups and in limiting cases be solved analytically, while in general it must be integrated numerically. Both methods are claimed to be applicable for inhomogeneities of arbitrary strength and to capture effects of the two-particle interaction, such as interaction dependent exponents, up to leading order. We critically review this for the simplest case of a single impurity. While on first glance the poor mans approach seems to describe the crossover from the ``perfect to the ``open chain fixed point we collect evidence that difficulties may arise close to the ``perfect chain fixed point. Due to a subtle relation between the scaling dimensions of the two fixed points this becomes apparent only in a detailed analysis. In the functional renormalization group method the coupling of the different scattering channels is kept which leads to a better description of the underlying physics.
We derive generalized Kronig identities expressing quadratic fermionic terms including momentum transfer to bosonic operators and use them to obtain the exact solution for one-dimensional fermionic models with linear dispersion in the presence of position-dependent interactions and scattering potential. In these Luttinger droplets, which correspond to Luttinger liquids with spatial variations or constraints, the position dependences of the couplings break the translational invariance of correlation functions and modify the Luttinger-liquid interrelations between excitation velocities.
We numerically investigate 1D Bose-Hubbard chains with onsite disorder by means of exact diagonalization. A primary focus of our work is on characterizing Fock-space localization in this model from the single-particle perspective. For this purpose, we compute the one-particle density matrix (OPDM) in many-body eigenstates. We show that the natural orbitals (the eigenstates of the OPDM) are extended in the ergodic phase and real-space localized when one enters into the MBL phase. Furthermore, the distributions of occupations of the natural orbitals can be used as measures of Fock-space localization in the respective basis. Consistent with previous studies, we observe signatures of a transition from the ergodic to the many-body localized (MBL) regime when increasing the disorder strength. We further demonstrate that Fock-space localization, albeit weaker, is also evidently present in the distribution of the physical densities in the MBL regime, both for soft- and hardcore bosons. Moreover, the full distribution of the densities of the physical particles provides a one-particle measure for the detection of the ergodic-MBL transition which could be directly accessed in experiments with ultra-cold gases.
Using a new approximate strong-randomness renormalization group (RG), we study the many-body localized (MBL) phase and phase transition in one-dimensional quantum systems with short-range interactions and quenched disorder. Our RG is built on those of Zhang $textit{et al.}$ [1] and Goremykina $textit{et al.}$ [2], which are based on thermal and insulating blocks. Our main addition is to characterize each insulating block with two lengths: a physical length, and an internal decay length $zeta$ for its effective interactions. In this approach, the MBL phase is governed by a RG fixed line that is parametrized by a global decay length $tilde{zeta}$, and the rare large thermal inclusions within the MBL phase have a fractal geometry. As the phase transition is approached from within the MBL phase, $tilde{zeta}$ approaches the finite critical value corresponding to the avalanche instability, and the fractal dimension of large thermal inclusions approaches zero. Our analysis is consistent with a Kosterlitz-Thouless-like RG flow, with no intermediate critical MBL phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا