Do you want to publish a course? Click here

Are Fluorination and Chlorination of the Morpholinium-Based Ionic Liquids Favorable?

862   0   0.0 ( 0 )
 Added by Vitaly Chaban
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Room-temperature ionic liquids (RTILs) constitute a fine-tunable class of compounds. Morpholinium-based cations are new to the field. They are promising candidates for electrochemistry, micellization and catalytic applications. We investigate halogenation (fluorination and chlorination) of the N-ethyl-N-methylmorpholinium cation from thermodynamics perspective. We find that substitutional fluorination is much more energetically favorable than substitutional chlorination, although the latter is also a permitted process. Although all halogenation at different locations are possible, they are not equally favorable. Furthermore, the trends are not identical in the case of fluorination and chlorination. We link the thermodynamic observables to electron density distribution within the investigated cation. The reported insights are based on the coupled-cluster technique, which is a highly accurate and reliable electron-correlation method. Novel derivatives of the morpholinium-based RTILs are discussed, motivating further efforts in synthetic chemistry.



rate research

Read More

Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural and transport properties of room-temperature ionic liquids (RTILs). These non-additive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge transfer generally decay as temperature increases, although their presence should be expected over an entire condensed state temperature range. For the first time, we use three popular pyridinium-based RTILs to investigate temperature dependence of electronic polarization in RTILs. Atom-centered density matrix propagation molecular dynamics, supplemented by a weak coupling to an external bath, is used to simulate the temperature impact on system properties. We show that, quite surprisingly, non-additivity in the cation-anion interactions changes negligibly between 300 and 900 K, while the average dipole moment increases due to thermal fluctuations of geometries. Our results contribute to the fundamental understanding of electronic effects in the condensed phase of ionic systems and foster progress in physical chemistry and engineering.
Room temperature ionic liquids play an important role in many technological applications and a detailed understanding of their frontier molecular orbitals is required to optimize interfacial barriers, reactivity and stability with respect to electron injection and removal. In this work, we calculate quasiparticle energy levels of ionic liquids using first-principles many-body perturbation theory within the GW approximation and compare our results to various mean-field approaches, including semilocal and hybrid density-functional theory and Hartree-Fock. We find that the mean-field results depend qualitatively and quantitatively on the treatment of exchange-correlation effects, while GW calculations produce results that are in excellent agreement with experimental photoelectron spectra of gas phase ion pairs and ionic liquids. These results establish the GW approach as a valuable tool for understanding the electronic structures of ionic liquids.
Solid-state batteries (SSBs) can offer a paradigm shift in battery safety and energy density. Yet, the promise hinges on the ability to integrate high-performance electrodes with state-of-the-art solid electrolytes. For example, lithium (Li) metal, the most energy-dense anode candidate, suffers from severe interfacial chemomechanical issues that lead to cell failure. Li alloys of In/Sn are attractive alternatives, but their exploration has mostly been limited to the low capacity(low Li content)and In rich Li$_x$In (x$leq$0.5). Here, the fundamental electro-chemo-mechanical behavior of Li-In and Li-Sn alloys of varied Li stoichiometries is unravelled in sulfide electrolyte based SSBs. The intermetallic electrodes developed through a controlled synthesis and fabrication technique display impressive (electro)chemical stability with Li$_6$PS$_5$Cl as the solid electrolyte and maintain nearly perfect interfacial contact during the electrochemical Li insertion/deinsertion under an optimal stack pressure. Their intriguing variation in the Li migration barrier with composition and its influence on the observed Li cycling overpotential is revealed through combined computational and electrochemical studies. Stable interfacial chemomechanics of the alloys allow long-term dendrite free Li cycling (>1000 h) at relatively high current densities (1 mA cm$^{-2}$) and capacities (1 mAh cm$^{-2}$), as demonstrated for Li$_{13}$In$_3$ and Li$_{17}$Sn$_4$, which are more desirable from a capacity and cost consideration compared to the low Li content analogues. The presented understanding can guide the development of high-capacity Li-In/Sn alloy anodes for SSBs.
Second harmonic generation amplitude and phase measurements are acquired in real time from fused silica:water interfaces that are subjected to ionic strength transitions conducted at pH 5.8. In conjunction with atomistic modeling, we identify correlations between structure in the Stern layer, encoded in the total second-order nonlinear susceptibility, chi(2)tot, and in the diffuse layer, encoded in the product of chi(2)tot and the total interfacial potential, phi(0)tot. chi(2)tot:phi(0)tot correlation plots indicate that the dynamics in the Stern and diffuse layers are decoupled from one another under some conditions (large change in ionic strength), while they change in lockstep under others (smaller change in ionic strength) as the ionic strength in the aqueous bulk solution varies. The quantitative structural and electrostatic information obtained also informs on the molecular origin of hysteresis in ionic strength cycling over fused silica. Atomistic simulations suggest a prominent role of contact ion pairs (as opposed to solvent-separated ion pairs) in the Stern layer. Those simulations also indicate that net water alignment is limited to the first 2 nm from the interface, even at 0 M ionic strength, highlighting waters polarization as an important contributor to nonlinear optical signal generation.
Computer simulations of (i) a [C12mim][Tf2N] film of nanometric thickness squeezed at kbar pressure by a piecewise parabolic confining potential reveal a mesoscopic in-plane density and composition modulation reminiscent of mesophases seen in 3D samples of the same room-temperature ionic liquid (RTIL). Near 2D confinement, enforced by a high normal load, relatively long aliphatic chains are strictly required for the mesophase formation, as confirmed by computations for two related systems made of (ii) the same [C12mim][Tf2N] adsorbed at a neutral solid surface and (iii) a shorter-chain RTIL ([C4mim][Tf2N]) trapped in the potential well of part i. No in-plane modulation is seen for ii and iii. In case ii, the optimal arrangement of charge and neutral tails is achieved by layering parallel to the surface, while, in case iii, weaker dispersion and packing interactions are unable to bring aliphatic tails together into mesoscopic islands, against overwhelming entropy and Coulomb forces. The onset of in-plane mesophases could greatly affect the properties of long-chain RTILs used as lubricants.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا