Trion formation in a two-dimensional hole-doped electron gas


Abstract in English

The interaction between a single hole and a two-dimensional, paramagnetic, homogeneous electron gas is studied using diffusion quantum Monte Carlo simulations. Calculations of the electron-hole correlation energy, pair-correlation function, and the electron-hole center-of-mass momentum density are reported for a range of electron--hole mass ratios and electron densities. We find numerical evidence of a crossover from a collective Mahan exciton to a trion-dominated state in a density range in agreement with that found in recent experiments on quantum well heterostructures.

Download